1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
/*******************************************************************************
NAME OBLIQUE MERCATOR (HOTINE)
PURPOSE: Transforms input Easting and Northing to longitude and
latitude for the Oblique Mercator projection. The
Easting and Northing must be in meters. The longitude
and latitude values will be returned in radians.
PROGRAMMER DATE
---------- ----
T. Mittan Mar, 1993
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
U.S. Geological Survey Professional Paper 1453 , United State Government
Printing Office, Washington D.C., 1989.
*******************************************************************************/
#include "cproj.h"
/* Variables common to all subroutines in this code file
-----------------------------------------------------*/
static double azimuth;
static double r_major; /* major axis */
static double r_minor; /* minor axis */
static double scale_factor; /* scale factor */
static double lon_origin; /* center longitude */
static double lat_origin; /* center latitude */
static double e,es; /* eccentricity constants */
static double false_northing; /* y offset in meters */
static double false_easting; /* x offset in meters */
static double sin_p20,cos_p20; /* sin and cos values */
static double bl;
static double al;
static double ts;
static double d;
static double el,u;
static double singam,cosgam;
static double sinaz,cosaz;
/* Initialize the Oblique Mercator projection
------------------------------------------*/
long omerinvint(r_maj,r_min,scale_fact,azimuth,lon_orig,lat_orig,false_east,
false_north,lon1,lat1,lon2,lat2,mode)
double r_maj; /* major axis */
double r_min; /* minor axis */
double scale_fact; /* scale factor */
double azimuth; /* azimuth east of north */
double lon_orig; /* longitude of origin */
double lat_orig; /* center latitude */
double false_east; /* x offset in meters */
double false_north; /* y offset in meters */
double lon1; /* fist point to define central line */
double lat1; /* fist point to define central line */
double lon2; /* second point to define central line */
double lat2; /* second point to define central line */
long mode; /* which format type A or B */
{
double temp; /* temporary variable */
double con,com;
double h,l,ts1,ts2;
double j,p,dlon;
double f,g,gama;
double sinphi,cosphi;
/* Place parameters in static storage for common use
-------------------------------------------------*/
r_major = r_maj;
r_minor = r_min;
scale_factor = scale_fact;
lat_origin = lat_orig;
false_northing = false_north;
false_easting = false_east;
temp = r_minor / r_major;
es = 1.0 - SQUARE(temp);
e = sqrt(es);
sincos(lat_origin,&sin_p20,&cos_p20);
con = 1.0 - es * sin_p20 * sin_p20;
com = sqrt(1.0 - es);
bl = sqrt(1.0 + es * pow(cos_p20,4.0)/(1.0 - es));
al = r_major * bl * scale_factor * com / con;
if (fabs(lat_origin) < EPSLN)
{
ts = 1.0;
d = 1.0;
el = 1.0;
}
else
{
ts = tsfnz(e,lat_origin,sin_p20);
con = sqrt(con);
d = bl * com / (cos_p20 * con);
if ((d * d - 1.0) > 0.0)
{
if (lat_origin >= 0.0)
f = d + sqrt(d * d - 1.0);
else
f = d - sqrt(d * d - 1.0);
}
else
f = d;
el = f * pow(ts,bl);
}
/* Report parameters to the user that are the same for both formats
---------------------------------------------------------------*/
ptitle("OBLIQUE MERCATOR (HOTINE)");
radius2(r_major, r_minor);
genrpt(scale_factor,"Scale Factor at C. Meridian: ");
offsetp(false_easting,false_northing);
if (mode != 0)
{
g = .5 * (f - 1.0/f);
gama = asinz(sin(azimuth) / d);
lon_origin = lon_orig - asinz(g * tan(gama))/bl;
/* Report parameters common to format B
-------------------------------------*/
genrpt(azimuth * R2D,"Azimuth of Central Line: ");
cenlon(lon_origin);
cenlat(lat_origin);
con = fabs(lat_origin);
if ((con > EPSLN) && (fabs(con - HALF_PI) > EPSLN))
{
sincos(gama,&singam,&cosgam);
sincos(azimuth,&sinaz,&cosaz);
if (lat_origin >= 0)
u = (al / bl) * atan(sqrt(d*d - 1.0)/cosaz);
else
u = -(al / bl) * atan(sqrt(d*d - 1.0)/cosaz);
}
else
{
p_error("Input data error","omer-init");
return(201);
}
}
else
{
sinphi = sin(lat1);
ts1 = tsfnz(e,lat1,sinphi);
sinphi = sin(lat2);
ts2 = tsfnz(e,lat2,sinphi);
h = pow(ts1,bl);
l = pow(ts2,bl);
f = el/h;
g = .5 * (f - 1.0/f);
j = (el * el - l * h)/(el * el + l * h);
p = (l - h) / (l + h);
dlon = lon1 - lon2;
if (dlon < -PI)
lon2 = lon2 - 2.0 * PI;
if (dlon > PI)
lon2 = lon2 + 2.0 * PI;
dlon = lon1 - lon2;
lon_origin = .5 * (lon1 + lon2) - atan(j * tan(.5 * bl * dlon)/p)/bl;
dlon = adjust_lon(lon1 - lon_origin);
gama = atan(sin(bl * dlon)/g);
azimuth = asinz(d * sin(gama));
/* Report parameters common to format A
-------------------------------------*/
genrpt(lon1 * R2D,"Longitude of First Point: ");
genrpt(lat1 * R2D,"Latitude of First Point: ");
genrpt(lon2 * R2D,"Longitude of Second Point: ");
genrpt(lat2 * R2D,"Latitude of Second Point: ");
if (fabs(lat1 - lat2) <= EPSLN)
{
p_error("Input data error","omer-init");
return(202);
}
else
con = fabs(lat1);
if ((con <= EPSLN) || (fabs(con - HALF_PI) <= EPSLN))
{
p_error("Input data error","omer-init");
return(202);
}
else
if (fabs(fabs(lat_origin) - HALF_PI) <= EPSLN)
{
p_error("Input data error","omer-init");
return(202);
}
sincos(gama,&singam,&cosgam);
sincos(azimuth,&sinaz,&cosaz);
if (lat_origin >= 0)
u = (al/bl) * atan(sqrt(d * d - 1.0)/cosaz);
else
u = -(al/bl) * atan(sqrt(d * d - 1.0)/cosaz);
}
return(OK);
}
/* Oblique Mercator inverse equations--mapping x,y to lat/long
----------------------------------------------------------*/
long omerinv(x, y, lon, lat)
double x; /* (O) X projection coordinate */
double y; /* (O) Y projection coordinate */
double *lon; /* (I) Longitude */
double *lat; /* (I) Latitude */
{
double delta_lon; /* Delta longitude (Given longitude - center */
double theta; /* angle */
double delta_theta; /* adjusted longitude */
double sin_phi, cos_phi;/* sin and cos value */
double b; /* temporary values */
double c, t, tq; /* temporary values */
double con, n, ml; /* cone constant, small m */
double vs,us,q,s,ts1;
double vl,ul,bs;
double dlon;
long flag;
/* Inverse equations
-----------------*/
x -= false_easting;
y -= false_northing;
flag = 0;
vs = x * cosaz - y * sinaz;
us = y * cosaz + x * sinaz;
us = us + u;
q = exp(-bl * vs / al);
s = .5 * (q - 1.0/q);
t = .5 * (q + 1.0/q);
vl = sin(bl * us / al);
ul = (vl * cosgam + s * singam)/t;
if (fabs(fabs(ul) - 1.0) <= EPSLN)
{
*lon = lon_origin;
if (ul >= 0.0)
*lat = HALF_PI;
else
*lat = -HALF_PI;
}
else
{
con = 1.0 / bl;
ts1 = pow((el / sqrt((1.0 + ul) / (1.0 - ul))),con);
*lat = phi2z(e,ts1,&flag);
if (flag != 0)
return(flag);
con = cos(bl * us /al);
theta = lon_origin - atan2((s * cosgam - vl * singam) , con)/bl;
*lon = adjust_lon(theta);
}
return(OK);
}
|