1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
/*******************************************************************************
NAME SPACE OBLIQUE MERCATOR (SOM)
PURPOSE: The first method of Transforming input longitude and
latitude to Easting and Northing for the SOM projection.
The longitude and latitude must be in radians. The
Easting and Northing values will be returned in meters.
PROGRAM HISTORY
PROGRAMMER DATE REASON
---------- ---- ------
D. Steinwand July, 1992
T. Mittan Mar, 1993
S. Nelson Nov, 1993 Changed error message
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. "Software Documentation for GCTP General Cartographic Transformation
Package", U.S. Geological Survey National Mapping Division, May 1982.
*******************************************************************************/
#include <stdio.h>
#include "cproj.h"
#define LANDSAT_RATIO 0.5201613
static double lon_center,a,b,a2,a4,c1,c3,q,t,u,w,xj,p21,sa,ca,es,s,start;
static double som_series(double *, double *, double *, double *, double *, double *);
static double false_easting;
static double false_northing;
long somforint(r_major,r_minor,satnum,path,alf_in,lon,false_east,false_north,
time, start1,flag)
double r_major; /* major axis */
double r_minor; /* minor axis */
long satnum; /* Landsat satellite number (1,2,3,4,5) */
long path; /* Landsat path number */
double alf_in;
double lon;
double false_east; /* x offset in meters */
double false_north; /* y offset in meters */
double time;
long start1;
long flag;
{
long i;
double alf,e2c,e2s,one_es;
double dlam,fb,fa2,fa4,fc1,fc3,suma2,suma4,sumc1,sumc3,sumb;
/* Place parameters in static storage for common use
-------------------------------------------------*/
false_easting = false_east;
false_northing = false_north;
a = r_major;
b = r_minor;
es = 1.0 - SQUARE(r_minor/r_major);
if (flag != 0)
{
alf = alf_in;
p21 = time / 1440.0;
lon_center = lon;
start = start1;
}
else
{
if (satnum < 4)
{
alf = 99.092 * D2R;
p21=103.2669323/1440.0;
lon_center = (128.87 - (360.0/251.0 * path)) * D2R;
}
else
{
alf = 98.2 * D2R;
p21=98.8841202/1440.0;
lon_center = (129.30 - (360.0/233.0 * path)) * D2R;
/*
lon_center = (-129.30557714 - (360.0/233.0 * path)) * D2R;
*/
}
start=0.0;
}
/* Report parameters to the user (to device set up prior to this call)
-------------------------------------------------------------------*/
ptitle("SPACE OBLIQUE MERCATOR");
radius2(a,b);
if (flag == 0)
{
genrpt_long(path, "Path Number: ");
genrpt_long(satnum, "Satellite Number: ");
}
genrpt(alf*R2D, "Inclination of Orbit: ");
genrpt(lon_center*R2D,"Longitude of Ascending Orbit: ");
offsetp(false_easting,false_northing);
genrpt(LANDSAT_RATIO, "Landsat Ratio: ");
ca=cos(alf);
if (fabs(ca)<1.e-9) ca=1.e-9;
sa=sin(alf);
e2c=es*ca*ca;
e2s=es*sa*sa;
w=(1.0-e2c)/(1.0-es);
w=w*w-1.0;
one_es=1.0-es;
q = e2s / one_es;
t = (e2s*(2.0-es)) / (one_es*one_es);
u= e2c / one_es;
xj = one_es*one_es*one_es;
dlam=0.0;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=fa2;
suma4=fa4;
sumb=fb;
sumc1=fc1;
sumc3=fc3;
for(i=9;i<=81;i+=18)
{
dlam=i;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+4.0*fa2;
suma4=suma4+4.0*fa4;
sumb=sumb+4.0*fb;
sumc1=sumc1+4.0*fc1;
sumc3=sumc3+4.0*fc3;
}
for(i=18; i<=72; i+=18)
{
dlam=i;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+2.0*fa2;
suma4=suma4+2.0*fa4;
sumb=sumb+2.0*fb;
sumc1=sumc1+2.0*fc1;
sumc3=sumc3+2.0*fc3;
}
dlam=90.0;
som_series(&fb,&fa2,&fa4,&fc1,&fc3,&dlam);
suma2=suma2+fa2;
suma4=suma4+fa4;
sumb=sumb+fb;
sumc1=sumc1+fc1;
sumc3=sumc3+fc3;
a2=suma2/30.0;
a4=suma4/60.0;
b=sumb/30.0;
c1=sumc1/15.0;
c3=sumc3/45.0;
return(OK);
}
long somfor(lon, lat, y, x)
double lon; /* (I) Longitude */
double lat; /* (I) Latitude */
double *x; /* (O) X projection coordinate */
double *y; /* (O) Y projection coordinate */
{
long n,i,l;
double delta_lon;
double rlm,tabs,tlam,xlam,c,xlamt,ab2,sc1,ab1,xlamp,sav;
double d,sdsq,sd,tanlg,xtan,tphi,dp,dd,ds,rlm2;
double scl,tlamp,conv,delta_lat,radlt,radln;
double temp;
char errorbuf[80];
/* Forward equations
-----------------*/
conv=1.e-7;
delta_lat=lat;
delta_lon= lon-lon_center;
/* Test for latitude and longitude approaching 90 degrees
----------------------------------------------------*/
if (delta_lat>1.570796) delta_lat=1.570796;
if (delta_lat<-1.570796) delta_lat= -1.570796;
radlt=delta_lat;
radln=delta_lon;
if(delta_lat>=0.0)tlamp=PI/2.0;
if(start!= 0.0)tlamp=2.5*PI;
if(delta_lat<0.0) tlamp=1.5*PI;
n=0;
L230: sav=tlamp;
l=0;
xlamp=radln+p21*tlamp;
ab1=cos(xlamp);
if(fabs(ab1)<conv) xlamp=xlamp-1.e-7;
if(ab1>=0.0) scl=1.0;
if(ab1<0.0) scl= -1.0;
ab2=tlamp-(scl)*sin(tlamp)*HALF_PI;
L240: xlamt=radln+p21*sav;
c=cos(xlamt);
if (fabs(c)<1.e-7) xlamt=xlamt-1.e-7;
xlam=(((1.0-es)*tan(radlt)*sa)+sin(xlamt)*ca)/c;
tlam=atan(xlam);
tlam=tlam+ab2;
tabs=fabs(sav)-fabs(tlam);
if(fabs(tabs)<conv) goto L250;
l=l+1;
if (l > 50) goto L260;
sav=tlam;
goto L240;
/* Adjust for confusion at beginning and end of landsat orbits
-----------------------------------------------------------*/
L250: rlm=PI*LANDSAT_RATIO;
rlm2=rlm+2.0*PI;
n++;
if(n>=3) goto L300;
if(tlam>rlm&&tlam<rlm2) goto L300;
if(tlam<rlm)tlamp=2.50*PI;
if(tlam>=rlm2) tlamp=HALF_PI;
goto L230;
L260: sprintf(errorbuf,"50 iterations without conv\n");
p_error(errorbuf,"som-forward");
return(214);
/* tlam computed - now compute tphi
--------------------------------*/
L300: ds=sin(tlam);
dd=ds*ds;
dp=sin(radlt);
tphi=asin(((1.0-es)*ca*dp-sa*cos(radlt)*sin(xlamt))/sqrt(1.0-es*dp*dp));
/* compute x and y
---------------*/
xtan = (PI/4.0) + (tphi/2.0);
tanlg = log(tan(xtan));
sd=sin(tlam);
sdsq=sd*sd;
s=p21*sa*cos(tlam)*sqrt((1.0+t*sdsq)/((1.0+w*sdsq)*(1.0+q*sdsq)));
d=sqrt(xj*xj+s*s);
*x=b*tlam+a2*sin(2.0*tlam)+a4*sin(4.0*tlam)-tanlg*s/d;
*x = a* *x;
*y=c1*sd+c3*sin(3.0*tlam)+tanlg*xj/d;
*y = a* *y;
/* Negate x & swap x,y
-------------------*/
temp= *x;
*x= *y + false_easting;
*y=temp + false_northing;;
return(OK);
}
/* Series to calculate a,b,c coefficients to convert from transform
latitude,longitude to Space Oblique Mercator (SOM) rectangular coordinates
Mathematical analysis by John Snyder 6/82
--------------------------------------------------------------------------*/
static double som_series(double *fb,double *fa2,double *fa4,
double *fc1,double *fc3,double *dlam)
{
double sd,sdsq,h,sq,fc;
*dlam= *dlam*0.0174532925; /* Convert dlam to radians */
sd=sin(*dlam);
sdsq=sd*sd;
s=p21*sa*cos(*dlam)*sqrt((1.0+t*sdsq)/((1.0+w*sdsq)*(1.0+q*sdsq)));
h=sqrt((1.0+q*sdsq)/(1.0+w*sdsq))*(((1.0+w*sdsq)/((1.0+q*sdsq)*(1.0+
q*sdsq)))-p21*ca);
sq=sqrt(xj*xj+s*s);
*fb=(h*xj-s*s)/sq;
*fa2= *fb*cos(2.0* *dlam);
*fa4= *fb*cos(4.0* *dlam);
fc=s*(h+xj)/sq;
*fc1=fc*cos(*dlam);
*fc3=fc*cos(3.0* *dlam);
}
|