1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
/*******************************************************************************
NAME UNIVERSAL TRANSVERSE MERCATOR
PURPOSE: Transforms input Easting and Northing to longitude and
latitude for the Universal Transverse Mercator projection.
The Easting and Northing must be in meters. The longitude
and latitude values will be returned in radians.
PROGRAMMER DATE REASON
---------- ---- ------
D. Steinwand, EROS Nov, 1991
T. Mittan Mar, 1993
S. Nelson Feb, 1995 Divided tminv.c into two files, one
for UTM (utminv.c) and one for
TM (tminv.c). This was a necessary
change to run inverse projection
conversions for both UTM and TM
in the same process.
ALGORITHM REFERENCES
1. Snyder, John P., "Map Projections--A Working Manual", U.S. Geological
Survey Professional Paper 1395 (Supersedes USGS Bulletin 1532), United
State Government Printing Office, Washington D.C., 1987.
2. Snyder, John P. and Voxland, Philip M., "An Album of Map Projections",
U.S. Geological Survey Professional Paper 1453 , United State Government
Printing Office, Washington D.C., 1989.
*******************************************************************************/
#include <stdlib.h>
#include "cproj.h"
/* Variables common to all subroutines in this code file
-----------------------------------------------------*/
static double r_major; /* major axis */
static double r_minor; /* minor axis */
static double scale_factor; /* scale factor */
static double lon_center; /* Center longitude (projection center) */
static double lat_origin; /* center latitude */
static double e0,e1,e2,e3; /* eccentricity constants */
static double e,es,esp; /* eccentricity constants */
static double ml0; /* small value m */
static double false_northing; /* y offset in meters */
static double false_easting; /* x offset in meters */
static long ind; /* sphere flag value */
/* Initialize the Universal Transverse Mercator (UTM) projection
-------------------------------------------------------------*/
long utminvint(r_maj,r_min,scale_fact,zone)
double r_maj; /* major axis */
double r_min; /* minor axis */
double scale_fact; /* scale factor */
long zone; /* zone number */
{
double temp; /* temprorary variables */
if ((abs(zone) < 1) || (abs(zone) > 60))
{
p_error("Illegal zone number","utm-invint");
return(11);
}
r_major = r_maj;
r_minor = r_min;
scale_factor = scale_fact;
lat_origin = 0.0;
lon_center = ((6 * abs(zone)) - 183) * D2R;
false_easting = 500000.0;
false_northing = (zone < 0) ? 10000000.0 : 0.0;
temp = r_minor / r_major;
es = 1.0 - SQUARE(temp);
e = sqrt(es);
e0 = e0fn(es);
e1 = e1fn(es);
e2 = e2fn(es);
e3 = e3fn(es);
ml0 = r_major * mlfn(e0, e1, e2, e3, lat_origin);
esp = es / (1.0 - es);
if (es < .00001)
ind = 1;
else
ind = 0;
/* Report parameters to the user
-----------------------------*/
ptitle("UNIVERSAL TRANSVERSE MERCATOR (UTM)");
genrpt_long(zone, "Zone: ");
radius2(r_major, r_minor);
genrpt(scale_factor,"Scale Factor at C. Meridian: ");
cenlonmer(lon_center);
return(OK);
}
/* Universal Transverse Mercator inverse equations--mapping x,y to lat,long
Note: The algorithm for UTM is exactly the same as TM and therefore
if a change is implemented, also make the change to TMINV.c
-----------------------------------------------------------------------*/
long utminv(x, y, lon, lat)
double x; /* (I) X projection coordinate */
double y; /* (I) Y projection coordinate */
double *lon; /* (O) Longitude */
double *lat; /* (O) Latitude */
{
double con,phi; /* temporary angles */
double delta_phi; /* difference between longitudes */
long i; /* counter variable */
double sin_phi, cos_phi, tan_phi; /* sin cos and tangent values */
double c, cs, t, ts, n, r, d, ds; /* temporary variables */
double f, h, g, temp; /* temporary variables */
long max_iter = 6; /* maximun number of iterations */
/* fortran code for spherical form
--------------------------------*/
if (ind != 0)
{
f = exp(x/(r_major * scale_factor));
g = .5 * (f - 1/f);
temp = lat_origin + y/(r_major * scale_factor);
h = cos(temp);
con = sqrt((1.0 - h * h)/(1.0 + g * g));
*lat = asinz(con);
if (temp < 0)
*lat = -*lat;
if ((g == 0) && (h == 0))
{
*lon = lon_center;
return(OK);
}
else
{
*lon = adjust_lon(atan2(g,h) + lon_center);
return(OK);
}
}
/* Inverse equations
-----------------*/
x = x - false_easting;
y = y - false_northing;
con = (ml0 + y / scale_factor) / r_major;
phi = con;
for (i=0;;i++)
{
delta_phi=((con + e1 * sin(2.0*phi) - e2 * sin(4.0*phi) + e3 * sin(6.0*phi))
/ e0) - phi;
/*
delta_phi = ((con + e1 * sin(2.0*phi) - e2 * sin(4.0*phi)) / e0) - phi;
*/
phi += delta_phi;
if (fabs(delta_phi) <= EPSLN) break;
if (i >= max_iter)
{
p_error("Latitude failed to converge","UTM-INVERSE");
return(95);
}
}
if (fabs(phi) < HALF_PI)
{
sincos(phi, &sin_phi, &cos_phi);
tan_phi = tan(phi);
c = esp * SQUARE(cos_phi);
cs = SQUARE(c);
t = SQUARE(tan_phi);
ts = SQUARE(t);
con = 1.0 - es * SQUARE(sin_phi);
n = r_major / sqrt(con);
r = n * (1.0 - es) / con;
d = x / (n * scale_factor);
ds = SQUARE(d);
*lat = phi - (n * tan_phi * ds / r) * (0.5 - ds / 24.0 * (5.0 + 3.0 * t +
10.0 * c - 4.0 * cs - 9.0 * esp - ds / 30.0 * (61.0 + 90.0 * t +
298.0 * c + 45.0 * ts - 252.0 * esp - 3.0 * cs)));
*lon = adjust_lon(lon_center + (d * (1.0 - ds / 6.0 * (1.0 + 2.0 * t +
c - ds / 20.0 * (5.0 - 2.0 * c + 28.0 * t - 3.0 * cs + 8.0 * esp +
24.0 * ts))) / cos_phi));
}
else
{
*lat = HALF_PI * sign(y);
*lon = lon_center;
}
return(OK);
}
|