File: bias.plx

package info (click to toggle)
libgedcom-perl 1.22-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 828 kB
  • sloc: perl: 7,883; sh: 102; makefile: 10
file content (695 lines) | stat: -rw-r--r-- 19,520 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
#!/usr/local/bin/perl -w

# This program was generated by lines2perl, which is part of Gedcom.pm.
# Gedcom.pm is Copyright 1998-2019, Paul Johnson (paul@pjcj.net)
# Version 1.22 - 15th November 2019

# Gedcom.pm is free.  It is licensed under the same terms as Perl itself.

# The latest version of Gedcom.pm should be available from my homepage:
# http://www.pjcj.net

use strict;

require 5.005;

use diagnostics;
use integer;

use Getopt::Long;

use Gedcom::LifeLines 1.22;

my $Ged;                                                         # Gedcom object
my %Opts;                                                              # options
my $_Traverse_sub;                                     # subroutine for traverse

sub out  { print  STDERR @_ unless $Opts{quiet} }
sub outf { printf STDERR @_ unless $Opts{quiet} }

sub initialise ()
{
  die "usage: $0 -gedcom_file file.ged\n"
    unless GetOptions(\%Opts,
                      "gedcom_file=s",
                      "quiet!",
                      "validate!",
                     ) and defined $Opts{gedcom_file};
  local $SIG{__WARN__} = sub { out "\n@_" };
  out "reading...";
  $Ged = Gedcom->new
  (
    gedcom_file  => $Opts{gedcom_file},
    callback     => sub { out "." }
  );
  if ($Opts{validate})
  {
    out "\nvalidating...";
    my %x;
    my $vcb = sub
    {
     my ($r) = @_;
     my $t = $r->{xref};
     out "." if $t && !$x{$t}++;
    };
    $Ged->validate($vcb);
  }
  out "\n";
  set_ged($Ged);
}

$SIG{__WARN__} = sub
{
  out $_[0] unless $_[0] =~ /^Use of uninitialized value/
};

# /*
# bias
# 
# Compute sex bias based on previous births
# 
# Version 1.22 - 15th November 2019
# 
# Ever notice that certain families seem to have all boys or all girls?
# Sometimes five or six in a row of all the same sex?  Is this a mere
# statistical fluctuation, or is something special happening?
# 
# This program gives statistics for male vs female births.  First, it
# tabulates the number of males and females next born after each possible
# proportion of previous births in the same family.  In particular, it
# gives the sex tally of first-borns (where the proportion of previous
# births is 0 males and 0 females), then the tally for second-borns where
# the first child was a female (0+1), and so on.  Any combination that
# doesn't actually occur in the database is skipped in the report (for
# example, if no family is found with more than 3 sons, the tallies for
# 3+0, 3+1, and so on would all show a total of 0 males, and there would
# be no tallies listed for 4+0, 4+1, and so on).
# 
# Children of unknown sex are not included in these statistics.
# 
# The program next prints out the relative excess of male births
# (typically a positive value) over the nominally expected 50%.  For many
# files, there is a tendency to include incomplete families with only one
# known child; for this reason, "only" children are excluded from these
# statistics.  Also, the male excess is computed for two different subsets
# of the children: (A) the set of all children not born last, and (B) the
# set of all children not born first.  For both of these, there is also a
# measure of the variability of the sex ratio to put the percentages in
# perspective.  In addition, the program prints out the correlation
# between the sex ratio for children already born into a family and the
# likelihood of getting a male (or female) as the *next* child.  If the
# sample is unbiased, and if the sex of each child is truly random, this
# correlation should be 0.
# 
# It also tallies the fraction of births matching the sex of the previous
# birth in the same family (again, excluding any children of unknown sex).
# These results are printed out for a succession of increasingly restricted
# cases: first, for all births of non-first-borns; then, for births preceded
# by two-in-a-row of the same sex; then, for three-in-a-row; and so on.
# 
# Bug: combinations with more than 9 sons or more than 9 daughters are not
# listed properly.
# 
# This program works only with LifeLines.
# 
# */
my $maxcount;
# /* maximum attained runcount */
my $nextsex;
# /* sex of next offspring in family */
my $prevsex;
# /* sex of previous offspring in family */
my $runcount;
# /* number of offspring so far in family */
# /* Square Root function. */
sub sqrt ($)
{
  my($x) = @_;
  my $and;
  my $approx;
  my $count;
  my $gt;
  my $le;
  my $sqrtval;
  my $y;
  $sqrtval = 0;
  if (($x > 0))
  {
    $sqrtval = 1;
    $approx = 1;
    $y = 4096;
    LOOP: while (($y <= $x))
    {
      # /* coarse grid */
      # 			
      $approx = $y;
      $sqrtval = ($sqrtval * 64);
      $y = ($y * 4096);
    }
    $y = ($approx * 4);
    LOOP: while (($y <= $x))
    {
      # /* fine grid */
      # 			
      $approx = $y;
      $sqrtval = ($sqrtval * 2);
      $y = ($y * 4);
    }
    $count = 0;
    LOOP: while ((($y != $sqrtval) && ($count < 9)))
    {
      $y = ($x / $sqrtval);
      $sqrtval = (($y + $sqrtval) / 2);
      $count = (1 + $count);
    }
  }
  return ($sqrtval);
}

sub accstep ($)
{
  my($list) = @_;
  my $le;
  my $x;
  $x = 1;
  LOOP: while (($x <= $runcount))
  {
    $list->[$x - 1] = (1 + $list->[$x - 1]);
    $x = (1 + $x);
  }
  undef
}

sub accum ($$)
{
  my($samsex, $difsex) = @_;
  my $gt;
  my $strcmp;
  if (($runcount > 0))
  {
    if (&strcmp($nextsex, $prevsex))
    {
      display &accstep($difsex);
      $runcount = 0;
    }
    else
    {
      display &accstep($samsex);
    }
  }
  $prevsex = $nextsex;
  $runcount = (1 + $runcount);
  if (($runcount > $maxcount))
  {
    $maxcount = $runcount;
  }
  undef
}

sub main ()
{
  my $allsex;
  my $birth;
  my $child;
  my $correl;
  my $count;
  my $diffsex;
  my $difsex;
  my $family;
  my $fems;
  my $fnum;
  my $gt;
  my $le;
  my $lt;
  my $males;
  my $nfems;
  my $nfract;
  my $nmales;
  my $not;
  my $nrecs;
  my $nsample;
  my $num;
  my $onlyfems;
  my $onlymales;
  my $or;
  my $p;
  my $pboys;
  my $percent;
  my $pfract;
  my $pgirls;
  my $procfract;
  my $prodfract;
  my $rmsn;
  my $rmsp;
  my $rssn;
  my $rssp;
  my $samesex;
  my $samsex;
  my $sqcorr;
  my $sumnfract;
  my $sumpfract;
  my $sumsqnfract;
  my $sumsqpfract;
  my $tot;
  my $totfems;
  my $totmales;
  my $weight;
  my $wtnfr;
  my $wtpfr;
  $males = [];
  $fems = [];
  $samsex = [];
  $difsex = [];
  $totmales = 0;
  $totfems = 0;
  $onlymales = 0;
  $onlyfems = 0;
  $num = 0;
  LOOP: for $family ($Ged->families)
  {
    $num++;
    $count = 0;
    $runcount = 0;
    $fnum = 0;
    LOOP: for $child ($family->children)
    {
      $fnum++;
        $nextsex = &sex($child);
        if ((! &strcmp($nextsex, "M")))
        {
          display &accum($samsex, $difsex);
          if (($count > 0))
          {
            $totmales = (1 + $totmales);
            $males->[$count - 1] = (1 + $males->[$count - 1]);
          }
          else
          {
            $onlymales = (1 + $onlymales);
          }
          $count = ($count + 10);
        }
        elsif ((! &strcmp($nextsex, "F")))
        {
          display &accum($samsex, $difsex);
          if (($count > 0))
          {
            $totfems = (1 + $totfems);
            $fems->[$count - 1] = (1 + $fems->[$count - 1]);
          }
          else
          {
            $onlyfems = (1 + $onlyfems);
          }
          if ((9 > ($count % 10)))
          {
            $count = ($count + 1);
          }
          else
          {
            display &print("More than 9 daughters\n");
          }
        }
    }
  }
  # /* Initialize statistics */
  $tot = ($totmales + $totfems);
  $count = 1;
  $nsample = 0;
  $sumnfract = 0;
  $sumpfract = 0;
  $sumsqnfract = 0;
  $sumsqpfract = 0;
  $prodfract = 0;
  $nrecs = 0;
  display "Previous\nbirth       Next\nrecord      birth\nMF         M      F\n";
  display "00";
  display &col((13 - &strlen(&d($onlymales))));
  display &d($onlymales);
  display &col((20 - &strlen(&d($onlyfems))));
  display &d($onlyfems);
  display "  (excluded from statistics)\n\n";
  LOOP: while (($count < 100))
  {
    $nmales = $males->[$count - 1];
    $nfems = $fems->[$count - 1];
    if (($nmales || $nfems))
    {
      $nrecs = (1 + $nrecs);
      if (($count < 10))
      {
        display "0";
      }
      display &d($count);
      display &col((13 - &strlen(&d($nmales))));
      display &d($nmales);
      display &col((20 - &strlen(&d($nfems))));
      display &d($nfems);
      display "\n";
      $nsample = ($nsample + 1);
      $pboys = ($count / 10);
      $pgirls = ($count % 10);
      $weight = ($nmales + $nfems);
      $p = ($pboys + $pgirls);
      # /* scales: pf-100, sqpf-10000, nf-100, sqnf-10000, prod-10000
      #    i.e., express fractions as percent
      #    This makes integer arithmetic acceptable.
      #    Note that pfract is too small, on average, by 0.5, etc. */
      # 
      # 		
      $pfract = ((100 * ($pboys - $pgirls)) / $p);
      $wtpfr = ($weight * $pfract);
      $sumpfract = ($sumpfract + $wtpfr);
      $sumsqpfract = ($sumsqpfract + ($pfract * $wtpfr));
      $wtnfr = (100 * ($nmales - $nfems));
      $nfract = ($wtnfr / $weight);
      # /*		set(sumnfract,add(sumnfract,wtnfr)) -- use grand difference */
      # 		
      $sumsqnfract = ($sumsqnfract + ($nfract * $wtnfr));
      $prodfract = ($prodfract + ($wtnfr * $pfract));
    }
    $count = ($count + 1);
  }
  display "Total:";
  display &col((13 - &strlen(&d($totmales))));
  display &d($totmales);
  display &col((20 - &strlen(&d($totfems))));
  display &d($totfems);
  display "\n";
  display &d($nrecs);
  display " birth combinations found\n";
  display &d($tot);
  display " 'next' individuals (excluding firstborns)\n\n";
  # /* Make approsimate corrections for roundoff errors */
  $sqcorr = (50 * ($totmales - $totfems));
  $sumnfract = (100 * ($totmales - $totfems));
  $sumsqnfract = ($sumsqnfract + $sqcorr);
  $procfract = ($prodfract + $sqcorr);
  $sumpfract = ($sumpfract + ($tot / 2));
  $sumsqpfract = (($sumsqpfract + $sumpfract) - ($tot / 3));
  $sumsqpfract = ($sumsqpfract - (($sumpfract * $sumpfract) / $tot));
  $sumsqnfract = ($sumsqnfract - (($sumnfract * $sumnfract) / $tot));
  $prodfract = ($prodfract - (($sumpfract * $sumnfract) / $tot));
  $rssp = &sqrt($sumsqpfract);
  $rssn = &sqrt($sumsqnfract);
  $correl = ((($prodfract / $rssp) * 100) / $rssn);
  $rmsp = &sqrt(($sumsqpfract / $tot));
  $rmsn = &sqrt(($sumsqnfract / $tot));
  display "Male excess of previous births= ";
  display &d(($sumpfract / $tot));
  display "% +/- ";
  display &d($rmsp);
  display "%\n";
  display "Male excess of next births    = ";
  display &d(($sumnfract / $tot));
  display "% +/- ";
  display &d($rmsn);
  display "%\n";
  display "Correlation between previous and next = ";
  display &d($correl);
  display "%\n";
  $count = 1;
  display "\nFraction of births that match (in sex) a run of previous births in the";
  display "\nsame family.  Children of unknown sex ignored in this tabulation.\n";
  display "\nRun";
  display &col((13 - 5));
  display "Total";
  display &col((25 - 9));
  display "Matching";
  display "\nLength";
  display &col((13 - 5));
  display "Cases";
  display &col((23 - 5));
  display "Cases";
  display &col((29 - 1));
  display "%\n";
  LOOP: while (($count <= $maxcount))
  {
    $samesex = $samsex->[$count - 1];
    $diffsex = $difsex->[$count - 1];
    $allsex = ($diffsex + $samesex);
    if (($allsex > 0))
    {
      display &d($count);
      display &col((13 - &strlen(&d($allsex))));
      display &d($allsex);
      display &col((23 - &strlen(&d($samesex))));
      display &d($samesex);
      $percent = &d(((100 * $samesex) / $allsex));
      display &col((29 - &strlen($percent)));
      display $percent;
      display "\n";
    }
    $count = (1 + $count);
    $birth = "births";
  }
  undef
}


initialise();
main();
flush();
0

__END__

Original LifeLines program follows:

/*
bias

Compute sex bias based on previous births

Version 1.22 - 15th November 2019

Ever notice that certain families seem to have all boys or all girls?
Sometimes five or six in a row of all the same sex?  Is this a mere
statistical fluctuation, or is something special happening?

This program gives statistics for male vs female births.  First, it
tabulates the number of males and females next born after each possible
proportion of previous births in the same family.  In particular, it
gives the sex tally of first-borns (where the proportion of previous
births is 0 males and 0 females), then the tally for second-borns where
the first child was a female (0+1), and so on.  Any combination that
doesn't actually occur in the database is skipped in the report (for
example, if no family is found with more than 3 sons, the tallies for
3+0, 3+1, and so on would all show a total of 0 males, and there would
be no tallies listed for 4+0, 4+1, and so on).

Children of unknown sex are not included in these statistics.

The program next prints out the relative excess of male births
(typically a positive value) over the nominally expected 50%.  For many
files, there is a tendency to include incomplete families with only one
known child; for this reason, "only" children are excluded from these
statistics.  Also, the male excess is computed for two different subsets
of the children: (A) the set of all children not born last, and (B) the
set of all children not born first.  For both of these, there is also a
measure of the variability of the sex ratio to put the percentages in
perspective.  In addition, the program prints out the correlation
between the sex ratio for children already born into a family and the
likelihood of getting a male (or female) as the *next* child.  If the
sample is unbiased, and if the sex of each child is truly random, this
correlation should be 0.

It also tallies the fraction of births matching the sex of the previous
birth in the same family (again, excluding any children of unknown sex).
These results are printed out for a succession of increasingly restricted
cases: first, for all births of non-first-borns; then, for births preceded
by two-in-a-row of the same sex; then, for three-in-a-row; and so on.

Bug: combinations with more than 9 sons or more than 9 daughters are not
listed properly.

This program works only with LifeLines.

*/

global(maxcount)	/* maximum attained runcount */
global(nextsex)		/* sex of next offspring in family */
global(prevsex)		/* sex of previous offspring in family */
global(runcount)	/* number of offspring so far in family */

/* Square Root function. */
func sqrt(x) {
	set(sqrtval,0)
	if(gt(x,0)) {
		set(sqrtval,1)
		set(approx,1)
		set(y,4096)
		while(le(y,x)) {	/* coarse grid */
			set(approx,y)
			set(sqrtval,mul(sqrtval,64))
			set(y,mul(y,4096))
		}
		set(y,mul(approx,4))
		while(le(y,x)) {	/* fine grid */
			set(approx,y)
			set(sqrtval,mul(sqrtval,2))
			set(y,mul(y,4))
		}
		set(count,0)
		while(and(ne(y,sqrtval),lt(count,9))) {
			set(y,div(x,sqrtval))
			set(sqrtval,div(add(y,sqrtval),2))
			set(count,add(1,count))
		}
	}
	return(sqrtval)
}

proc accstep(list) {
	set(x,1)
	while(le(x,runcount)) {
		setel(list,x,add(1,getel(list,x)))
		set(x,add(1,x))
	}
}

proc accum(samsex,difsex) {
	if(gt(runcount,0)) {
		if(strcmp(nextsex,prevsex)) {
			call accstep(difsex)
			set(runcount,0)
		} else { call accstep(samsex) }
	}
	set(prevsex,nextsex)
	set(runcount,add(1,runcount))
	if(gt(runcount,maxcount)) {set(maxcount,runcount)}
}

proc main ()
{

list(males)
list(fems)
list(samsex)
list(difsex)

set(totmales,0)
set(totfems,0)
set(onlymales,0)
set(onlyfems,0)

forfam (family, num) {
	set(count,0)
	set(runcount,0)
	children(family,child,fnum) {
		set(nextsex,sex(child))
		if(not(strcmp(nextsex,"M"))) {
			call accum(samsex,difsex)
			if(gt(count,0)) {
				set(totmales,add(1,totmales))
				setel(males,count,add(1,getel(males,count)))
			} else {set(onlymales,add(1,onlymales))}
			set(count,add(count,10))
		}
		elsif(not(strcmp(nextsex,"F"))) {
			call accum(samsex,difsex)
			if(gt(count,0)) {
				set(totfems,add(1,totfems))
				setel(fems,count,add(1,getel(fems,count)))
			} else {set(onlyfems,add(1,onlyfems))}
			if(gt(9,mod(count,10))) {set(count,add(count,1))}
			else { print("More than 9 daughters\n") }
		}
	}
}

/* Initialize statistics */
set(tot,add(totmales,totfems))
set(count,1)
set(nsample,0)
set(sumnfract,0)
set(sumpfract,0)
set(sumsqnfract,0)
set(sumsqpfract,0)
set(prodfract,0)
set(nrecs,0)

"Previous\nbirth       Next\nrecord      birth\nMF         M      F\n"
"00" col(sub(13,strlen(d(onlymales)))) d(onlymales)
col(sub(20,strlen(d(onlyfems)))) d(onlyfems) "  (excluded from statistics)\n\n"

while(lt(count,100)) {
	set(nmales,getel(males,count))
	set(nfems,getel(fems,count))
	if(or(nmales,nfems)) {
		set(nrecs,add(1,nrecs))
		if(lt(count,10)) { "0" }
		d(count) col(sub(13,strlen(d(nmales)))) d(nmales)
		col(sub(20,strlen(d(nfems)))) d(nfems) "\n"
		set(nsample,add(nsample,1))
		set(pboys,div(count,10))
		set(pgirls,mod(count,10))
		set(weight,add(nmales,nfems))
		set(p,add(pboys,pgirls))

/* scales: pf-100, sqpf-10000, nf-100, sqnf-10000, prod-10000
   i.e., express fractions as percent
   This makes integer arithmetic acceptable.
   Note that pfract is too small, on average, by 0.5, etc. */

		set(pfract,div(mul(100,sub(pboys,pgirls)),p))
		set(wtpfr,mul(weight,pfract))
		set(sumpfract,add(sumpfract,wtpfr))
		set(sumsqpfract,add(sumsqpfract,mul(pfract,wtpfr)))
		set(wtnfr,mul(100,sub(nmales,nfems)))
		set(nfract,div(wtnfr,weight))
/*		set(sumnfract,add(sumnfract,wtnfr)) -- use grand difference */
		set(sumsqnfract,add(sumsqnfract,mul(nfract,wtnfr)))
		set(prodfract,add(prodfract,mul(wtnfr,pfract)))
	}
	set(count, add(count,1))
}

"Total:" col(sub(13,strlen(d(totmales)))) d(totmales)
col(sub(20,strlen(d(totfems)))) d(totfems) "\n"
d(nrecs) " birth combinations found\n"
d(tot) " 'next' individuals (excluding firstborns)\n\n"

/* Make approsimate corrections for roundoff errors */
set(sqcorr,mul(50,sub(totmales,totfems)))
set(sumnfract,mul(100,sub(totmales,totfems)))
set(sumsqnfract,add(sumsqnfract,sqcorr))
set(procfract,add(prodfract,sqcorr))
set(sumpfract,add(sumpfract,div(tot,2)))
set(sumsqpfract,sub(add(sumsqpfract,sumpfract),div(tot,3)))

set(sumsqpfract,sub(sumsqpfract,div(mul(sumpfract,sumpfract),tot)))
set(sumsqnfract,sub(sumsqnfract,div(mul(sumnfract,sumnfract),tot)))
set(prodfract,sub(prodfract,div(mul(sumpfract,sumnfract),tot)))
set(rssp,sqrt(sumsqpfract))
set(rssn,sqrt(sumsqnfract))
set(correl,div(mul(div(prodfract,rssp),100),rssn))
set(rmsp,sqrt(div(sumsqpfract,tot)))
set(rmsn,sqrt(div(sumsqnfract,tot)))

"Male excess of previous births= " d(div(sumpfract,tot)) "% +/- " d(rmsp) "%\n"
"Male excess of next births    = " d(div(sumnfract,tot)) "% +/- " d(rmsn) "%\n"
"Correlation between previous and next = " d(correl) "%\n"

set(count,1)
"\nFraction of births that match (in sex) a run of previous births in the"
"\nsame family.  Children of unknown sex ignored in this tabulation.\n"
"\nRun" col(sub(13,5)) "Total" col(sub(25,9)) "Matching"
"\nLength" col(sub(13,5)) "Cases" col(sub(23,5)) "Cases" col(sub(29,1)) "%\n"

while(le(count,maxcount)) {
	set(samesex,getel(samsex,count))
	set(diffsex,getel(difsex,count))
	set(allsex,add(diffsex,samesex))
	if(gt(allsex,0)) {
	  d(count) col(sub(13,strlen(d(allsex)))) d(allsex)
	  col(sub(23,strlen(d(samesex)))) d(samesex)
	  set(percent,d(div(mul(100,samesex),allsex)))
	  col(sub(29,strlen(percent))) percent "\n"
	}
	set(count,add(1,count))
	set(birth,"births")
}

}