1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
|
/* priorityqueue.vala
*
* Copyright (C) 2009 Didier Villevalois
* Copyright (C) 2012 Maciej Piechotka
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Author:
* Didier 'Ptitjes Villevalois <ptitjes@free.fr>
*/
/**
* Relaxed fibonacci heap priority queue implementation of the {@link Queue}.
*
* The elements of the priority queue are ordered according to their natural
* ordering, or by a compare_func provided at queue construction time. A
* priority queue does not permit null elements and does not have bounded
* capacity.
*
* This implementation provides O(1) time for offer and peek methods, and
* O(log n) for poll method. It is based on the algorithms described by
* Boyapati Chandra Sekhar in:
*
* "Worst Case Efficient Data Structures
* for Priority Queues and Deques with Heap Order"
* Boyapati Chandra Sekhar (under the guidance of Prof. C. Pandu Rangan)
* Department of Computer Science and Engineering
* Indian Institute of Technology, Madras
* May 1996
*/
public class Gee.PriorityQueue<G> : Gee.AbstractQueue<G> {
/**
* The elements' comparator function.
*/
public CompareFunc compare_func { private set; get; }
private int _size = 0;
private int _stamp = 0;
private Type1Node<G>? _r = null;
private Type2Node<G>? _r_prime = null;
private Type2Node<G>? _lm_head = null;
private Type2Node<G>? _lm_tail = null;
private Type1Node<G>? _p = null;
#if VALA_0_16
private Type1Node<G>?[] _a = new Type1Node<G>?[0];
#else
private Type1Node<G>?[] _a = new Type1Node<G>[0];
#endif
private NodePair<G>? _lp_head = null;
private NodePair<G>? _lp_tail = null;
private bool[] _b = new bool[0];
private Type1Node<G>? _ll_head = null;
private Type1Node<G>? _ll_tail = null;
private unowned Node<G> _iter_head = null;
private unowned Node<G> _iter_tail = null;
/**
* Constructs a new, empty priority queue.
*
* If not provided, the function parameter is requested to the
* {@link Functions} function factory methods.
*
* @param compare_func an optional element comparator function
*/
public PriorityQueue (CompareFunc? compare_func = null) {
if (compare_func == null) {
compare_func = Functions.get_compare_func_for (typeof (G));
}
this.compare_func = compare_func;
}
/**
* {@inheritDoc}
*/
public override int capacity {
get { return UNBOUNDED_CAPACITY; }
}
/**
* {@inheritDoc}
*/
public override int remaining_capacity {
get { return UNBOUNDED_CAPACITY; }
}
/**
* {@inheritDoc}
*/
public override bool is_full {
get { return false; }
}
/**
* {@inheritDoc}
*/
public override bool offer (G element) {
#if DEBUG
_dump ("Start offer: %s".printf ((string)element));
#endif
if (_r == null) {
_r = new Type1Node<G> (element, ref _iter_head, ref _iter_tail);
_p = _r;
} else if (_r_prime == null) {
_r_prime = new Type2Node<G> (element, ref _iter_head, ref _iter_tail);
_r_prime.parent = _r;
_r.type2_child = _r_prime;
if (_compare (_r_prime, _r) < 0)
_swap_data (_r_prime, _r);
} else {
// Form a tree with a single node N of type I consisting of element e
Type1Node<G> node = new Type1Node<G> (element, ref _iter_head, ref _iter_tail);
//Add(Q, N)
_add (node);
}
_stamp++;
_size++;
#if DEBUG
_dump ("End offer: %s".printf ((string)element));
#endif
return true;
}
/**
* {@inheritDoc}
*/
public override G? peek () {
if (_r == null) {
return null;
}
return _r.data;
}
/**
* {@inheritDoc}
*/
public override G? poll () {
#if DEBUG
_dump ("Start poll:");
#endif
// 1a. M inElement <- R.element
if (_r == null) {
return null;
}
G min = _r.data;
_r.pending_drop = false;
_stamp++;
_size--;
// 1b. R.element = R'.element
if (_r_prime == null) {
if (_r.iter_next != null) {
_r.iter_next.iter_prev = _r.iter_prev;
}
if (_r.iter_prev != null) {
_r.iter_prev.iter_next = _r.iter_next;
}
if (_iter_head == _r) {
_iter_head = _r.iter_next;
}
if (_iter_tail == _r) {
_iter_tail = _r.iter_prev;
}
_r = null;
_p = null;
return min;
}
_move_data (_r, _r_prime);
// 1c. R'' <- The child of R' containing the minimum element among the children of R'
if (_r_prime.type1_children_head == null) {
_remove_type2_node (_r_prime, true);
_r_prime = null;
return min;
}
Type1Node<G>? r_second = null;
Type1Node<G> node = _r_prime.type1_children_head;
while (node != null) {
if (r_second == null || _compare (node, r_second) < 0) {
r_second = node;
}
node = node.brothers_next;
}
// 1d. R'.element <- R''.element
_move_data (_r_prime, r_second);
// 2a. Delete the subtree rooted at R'' from Q
_remove_type1_node (r_second, true);
// 2b. For all children N of type I of R'' do make N a child of R' of Q
node = r_second.type1_children_head;
while (node != null) {
Type1Node<G> next = node.brothers_next;
_remove_type1_node (node, false);
_add_in_r_prime (node);
node = next;
}
// For now we can't have type2 node other than R' (left for reference)
#if false
// 3a. If R'' has no child of type II then goto Step 4.
if (r_second.type2_child != null) {
// 3b. Let M' be the child of type II of R''. Insert(Q, M'.element)
Type2Node<G> m_prime = r_second.type2_child;
_remove_type2_node (m_prime);
offer (m_prime.data);
// 3c. For all children N of M do make N a child of R' of Q
node = m_prime.type1_children_head;
while (node != null) {
Type1Node<G> next = node.brothers_next;
_remove_type1_node (node);
_add_in_r_prime (node);
node = next;
}
}
#endif
// 4. Adjust(Q, P, P)
_adjust (_p, _p);
// For now we can't have type2 node other than R' (left for reference)
#if false
// 5a. if LM is empty then goto Step 6
if (_lm_head != null) {
// 5b. M <- Head(LM); LM <- Tail(LM)
Type2Node<G> m = _lm_head;
// 5c. Delete M from Q
_remove_type2_node (m);
// 5d. I nsert(Q, M.element)
offer (m.data);
// 5e. For all children N of M do make M a child of R' of Q
node = m.type1_children_head;
while (node != null) {
Type1Node<G> next = node.brothers_next;
_remove_type1_node (node);
_add_in_r_prime (node);
node = next;
}
}
#endif
// 6. While among the children of R' there exist any two different nodes Ri and Rj
// such that Ri.degree = Rj.degree do Link(Q, Ri, Rj)
while (_check_linkable ()) {}
// 7. Return MinElement
return min;
}
/**
* {@inheritDoc}
*/
public override int drain (Collection<G> recipient, int amount = -1) {
if (amount == -1) {
amount = this._size;
}
for (int i = 0; i < amount; i++) {
if (this._size == 0) {
return i;
}
recipient.add (poll ());
}
return amount;
}
/**
* {@inheritDoc}
*/
public override int size {
get { return _size; }
}
/**
* {@inheritDoc}
*/
public override bool contains (G item) {
foreach (G an_item in this) {
if (compare_func (item, an_item) == 0) {
return true;
}
}
return false;
}
/**
* {@inheritDoc}
*/
public override bool add (G item) {
return offer (item);
}
/**
* {@inheritDoc}
*/
public override bool remove (G item) {
#if DEBUG
_dump ("Start remove: %s".printf ((string) item));
#endif
Iterator<G> iterator = new Iterator<G> (this);
while (iterator.next ()) {
G an_item = iterator.get ();
if (compare_func (item, an_item) == 0) {
iterator.remove ();
return true;
}
}
return false;
}
/**
* {@inheritDoc}
*/
public override void clear () {
_size = 0;
_r = null;
_r_prime = null;
_lm_head = null;
_lm_tail = null;
_p = null;
#if VALA_0_16
_a = new Type1Node<G>?[0];
#else
_a = new Type1Node<G>[0];
#endif
_lp_head = null;
_lp_tail = null;
_b = new bool[0];
_ll_head = null;
_ll_tail = null;
_iter_head = null;
_iter_tail = null;
}
/**
* {@inheritDoc}
*/
public override Gee.Iterator<G> iterator () {
return new Iterator<G> (this);
}
private inline int _compare (Node<G> node1, Node<G> node2) {
// Assume there can't be two nodes pending drop
if (node1.pending_drop) {
return -1;
} else if (node2.pending_drop) {
return 1;
} else {
return compare_func (node1.data, node2.data);
}
}
private inline void _swap_data (Node<G> node1, Node<G> node2) {
#if DEBUG
_dump ("Before swap: %p(%s) %p(%s)".printf(node1, (string)node1.data, node2, (string)node2.data));
#endif
G temp_data = (owned) node1.data;
bool temp_pending_drop = node1.pending_drop;
node1.data = (owned) node2.data;
node1.pending_drop = node2.pending_drop;
node2.data = (owned) temp_data;
node2.pending_drop = temp_pending_drop;
if (node1.iter_next == node2) { // Before swap: N1 N2
unowned Node<G> temp_iter_prev = node1.iter_prev;
unowned Node<G> temp_iter_next = node2.iter_next;
node1.iter_prev = node2;
node1.iter_next = temp_iter_next;
node2.iter_prev = temp_iter_prev;
node2.iter_next = node1;
} else if (node1.iter_prev == node2) { // Before swap: N2 N1
unowned Node<G> temp_iter_prev = node2.iter_prev;
unowned Node<G> temp_iter_next = node1.iter_next;
node1.iter_prev = temp_iter_prev;
node1.iter_next = node2;
node2.iter_prev = node1;
node2.iter_next = temp_iter_next;
} else {
unowned Node<G> temp_iter_prev = node1.iter_prev;
unowned Node<G> temp_iter_next = node1.iter_next;
node1.iter_prev = node2.iter_prev;
node1.iter_next = node2.iter_next;
node2.iter_prev = temp_iter_prev;
node2.iter_next = temp_iter_next;
}
if (node2 == _iter_head) {
_iter_head = node1;
} else if (node1 == _iter_head) {
_iter_head = node2;
}
if (node2 == _iter_tail) {
_iter_tail = node1;
} else if (node1 == _iter_tail) {
_iter_tail = node2;
}
if (node1.iter_prev != null) {
node1.iter_prev.iter_next = node1;
}
if (node1.iter_next != null) {
node1.iter_next.iter_prev = node1;
}
if (node2.iter_prev != null) {
node2.iter_prev.iter_next = node2;
}
if (node2.iter_next != null) {
node2.iter_next.iter_prev = node2;
}
#if DEBUG
_dump ("After swap: %p(%s) %p(%s)".printf(node1, (string)node1.data, node2, (string)node2.data));
#endif
}
private inline void _move_data (Node<G> target, Node<G> source) {
#if DEBUG
_dump ("Before move: %p(%s) <- %p(%s)".printf(target, (string)target.data, source, (string)source.data));
#endif
if (target.iter_next != null) {
target.iter_next.iter_prev = target.iter_prev;
} else if (_iter_tail == target) {
_iter_tail = target.iter_prev;
}
if (target.iter_prev != null) {
target.iter_prev.iter_next = target.iter_next;
} else if (_iter_head == target) {
_iter_head = target.iter_next;
}
target.data = source.data;
target.pending_drop = source.pending_drop;
target.iter_next = source.iter_next;
target.iter_prev = source.iter_prev;
source.iter_next = null;
source.iter_prev = null;
if (target.iter_next != null) {
target.iter_next.iter_prev = target;
} else if (_iter_tail == source) {
_iter_tail = target;
}
if (target.iter_prev != null) {
target.iter_prev.iter_next = target;
} else if (_iter_head == source) {
_iter_head = target;
}
#if DEBUG
_dump ("After move:");
#endif
}
private void _link (owned Type1Node<G> ri, owned Type1Node<G> rj) {
assert (ri.degree () == rj.degree ());
// Delete the subtrees rooted at Ri and Rj from Q
_remove_type1_node (ri, false);
_remove_type1_node (rj, false);
// If Ri.element > Rj.element then Swap(Ri,Rj)
if (_compare (ri, rj) > 0) {
Type1Node<G> temp = ri;
ri = rj;
rj = temp;
}
// Make Rj the last child of Ri
_add_to (rj, ri);
// Make Ri (whose degree now = d+1) a child of R' of Q
_add_in_r_prime (ri);
}
private void _add (Type1Node<G> n) {
// Make N a child of R' of Q
_add_in_r_prime (n);
// If N.element < R'.element then Swap(N.element, R'.element)
if (_compare (n, _r_prime) < 0) {
_swap_data (n, _r_prime);
}
// If R'.element < R.element then Swap(R'.element, R.element)
if (_compare (_r_prime, _r) < 0) {
_swap_data (_r_prime, _r);
}
// If among the children of R' there exist any two different nodes Ri and Rj
// such that Ri.degree = Rj.degree then Link(Q, Ri, Rj)
_check_linkable ();
#if DEBUG
_dump ("End _add: %p(%s)".printf (n, (string) n.data));
#endif
}
private bool _check_linkable () {
#if DEBUG
_dump ("Start _check_linkable:");
#endif
if (_lp_head != null) {
NodePair<G> pair = _lp_head;
_link (pair.node1, pair.node2);
return true;
}
return false;
}
private Node<G> _re_insert (owned Type1Node<G> n) {
assert (n != _r);
#if DEBUG
_dump ("Start _re_insert: %p(%s)".printf (n, (string) n.data));
#endif
//Parent <- N.parent
Node<G> parent = n.parent;
// Delete the subtree rooted at N from Q
_remove_type1_node (n, false);
// Add(Q, N)
_add (n);
// Return Parent
return parent;
}
private void _adjust (Type1Node<G> p1, Type1Node<G> p2) {
// If M.lost <= 1 for all nodes M in Q then return
if (_ll_head == null) {
return;
}
#if DEBUG
_dump ("Start _adjust: %p(%s), %p(%s)".printf (p1, (string) p1.data, p2, (string) p2.data));
#endif
// If P1.lost > P2.lost then M <- P1 else M <- P2
Type1Node<G> m;
if (p1.lost > p2.lost) {
m = p1;
} else {
m = p2;
}
// If M.lost <= 1 then M <- M' for some node M' in Q such that M'.lost > 1
if (m.lost <= 1) {
m = _ll_head;
if (_ll_head.ll_next != null) {
_ll_head.ll_next.ll_prev = null;
}
_ll_head = _ll_head.ll_next;
}
// P <- ReInsert(Q, M)
_p = (Type1Node<G>) _re_insert (m);
#if DEBUG
_dump ("End _adjust: %p(%s), %p(%s)".printf (p1, (string) p1.data, p2, (string) p2.data));
#endif
}
private void _delete (Node<G> n) {
// DecreaseKey(Q, N, infinite)
_decrease_key (n);
// DeleteMin(Q)
poll ();
}
private void _decrease_key (Node<G> n) {
#if DEBUG
_dump ("Start _decrease_key: %p(%s)".printf (n, (string) n.data));
#endif
if (n == _r || _r_prime == null) {
return;
}
n.pending_drop = true;
// If (N = R or R') and (R'.element < R.element) then
// Swap(R'.element, R.element); return
if (n == _r_prime && _compare (_r_prime, _r) < 0) {
_swap_data (_r_prime, _r);
return;
}
// For now we can't have type2 node other than R' (left for reference)
#if false
// If (N is of type II) and (N.element < N.parent.element) then
// Swap(N.element, N.parent.element); N <- N.parent
if (n is Type2Node && _compare (n, n.parent) < 0) {
_swap_data (n, n.parent);
n = n.parent;
}
#endif
// Can't occur as we made n be the most little (left for reference)
#if false
// If N.element >= N.parent.element then return
if (n.parent != null && _compare (n, n.parent) >= 0) {
return;
}
#endif
// P' <- ReInsert(Q, N)
Node<G> p_prime = _re_insert ((Type1Node<G>) n);
if (p_prime is Type2Node) {
// Adjust(Q, P, P);
_adjust (_p, _p);
} else {
// Adjust(Q, P, P');
_adjust (_p, (Type1Node<G>) p_prime);
}
}
private void _add_to (Type1Node<G> node, Type1Node<G> parent) {
parent.add (node);
parent.lost = 0;
}
private void _add_in_r_prime (Type1Node<G> node) {
#if DEBUG
_dump ("Start _add_in_r_prime: %p(%s)".printf (node, (string) node.data));
#endif
int degree = node.degree ();
Type1Node<G>? insertion_point = null;
if (degree < _a.length) {
insertion_point = _a[degree];
}
if (insertion_point == null) {
if (_r_prime.type1_children_tail != null) {
node.brothers_prev = _r_prime.type1_children_tail;
_r_prime.type1_children_tail.brothers_next = node;
} else {
_r_prime.type1_children_head = node;
}
_r_prime.type1_children_tail = node;
} else {
if (insertion_point.brothers_prev != null) {
insertion_point.brothers_prev.brothers_next = node;
node.brothers_prev = insertion_point.brothers_prev;
} else {
_r_prime.type1_children_head = node;
}
node.brothers_next = insertion_point;
insertion_point.brothers_prev = node;
}
node.parent = _r_prime;
// Maintain A, B and LP
if (degree >= _a.length) {
_a.resize (degree + 1);
_b.resize (degree + 1);
}
// If there is already a child of such degree
if (_a[degree] == null) {
_b[degree] = true;
} else {
// Else if there is an odd number of child of such degree
if (_b[degree]) {
// Make a pair
NodePair<G> pair = new NodePair<G> (node, node.brothers_next);
node.brothers_next.pair = pair;
node.pair = pair;
if (_lp_head == null) {
_lp_head = pair;
_lp_tail = pair;
} else {
pair.lp_prev = _lp_tail;
_lp_tail.lp_next = pair;
_lp_tail = pair;
}
// There is now an even number of child of such degree
_b[degree] = false;
} else {
_b[degree] = true;
}
}
_a[degree] = node;
#if DEBUG
_dump ("End _add_in_r_prime: %p(%s)".printf (node, (string) node.data));
#endif
}
private void _remove_type1_node (Type1Node<G> node, bool with_iteration) {
#if DEBUG
_dump ("Start _remove_type1_node: %p(%s)".printf (node, (string) node.data));
#endif
if (node.parent == _r_prime) {
_updated_degree (node, false);
} else {
// Maintain LL
if (node.ll_prev != null) {
node.ll_prev.ll_next = node.ll_next;
} else if (_ll_head == node) {
_ll_head = node.ll_next;
}
if (node.ll_next != null) {
node.ll_next.ll_prev = node.ll_prev;
} else if (_ll_tail == node) {
_ll_tail = node.ll_prev;
}
if (node.parent != null) {
if (node.parent.parent == _r_prime) {
_updated_degree ((Type1Node<G>) node.parent, true);
} else if (node.parent.parent != null) {
Type1Node<G> parent = (Type1Node<G>) node.parent;
// Increment parent's lost count
parent.lost++;
// And add it to LL if needed
if (parent.lost > 1) {
if (_ll_tail != null) {
parent.ll_prev = _ll_tail;
_ll_tail.ll_next = parent;
} else {
_ll_head = parent;
}
_ll_tail = parent;
}
}
}
}
// Check whether removed node is P
if (node == _p) {
_p = _r;
}
// Maintain brothers list
node.remove ();
// Maintain iteration
if (with_iteration) {
if (node.iter_prev != null) {
node.iter_prev.iter_next = node.iter_next;
} else if (_iter_head == node) {
_iter_head = node.iter_next;
}
if (node.iter_next != null) {
node.iter_next.iter_prev = node.iter_prev;
} else if (_iter_tail == node) {
_iter_tail = node.iter_prev;
}
}
#if DEBUG
_dump ("End _remove_type1_node: %p(%s)".printf (node, (string) node.data));
#endif
}
private void _updated_degree (Type1Node<G> node, bool child_removed) {
int degree = node.degree ();
// Ensure proper sizes of A and B
if (degree >= _a.length) {
_a.resize (degree + 1);
_b.resize (degree + 1);
}
// Maintain A and B
if (child_removed && _a[degree - 1] == null) {
_a[degree - 1] = node;
_b[degree - 1] = ! _b[degree - 1];
}
_b[degree] = ! _b[degree];
if (_a[degree] == node) {
Type1Node<G> next = node.brothers_next;
if (next != null && next.degree () == degree) {
_a[degree] = next;
} else {
_a[degree] = null;
int i = _a.length - 1;
while (i >= 0 && _a[i] == null) {
i--;
}
_a.resize (i + 1);
_b.resize (i + 1);
}
}
// Maintain LP
if (node.pair != null) {
NodePair<G> pair = node.pair;
Type1Node<G> other = (pair.node1 == node ? pair.node2 : pair.node1);
node.pair = null;
other.pair = null;
if (pair.lp_prev != null) {
pair.lp_prev.lp_next = pair.lp_next;
} else {
_lp_head = pair.lp_next;
}
if (pair.lp_next != null) {
pair.lp_next.lp_prev = pair.lp_prev;
} else {
_lp_tail = pair.lp_prev;
}
}
}
private void _remove_type2_node (Type2Node<G> node, bool with_iteration) {
#if DEBUG
_dump ("Start _remove_type2_node: %p(%s)".printf (node, (string) node.data));
#endif
((Type1Node<G>) node.parent).type2_child = null;
node.parent = null;
// For now we can't have type2 node other than R' (left for reference)
#if false
// Maintain LM
if (node != _r_prime) {
if (node.lm_prev != null) {
node.lm_prev.lm_next = node.lm_next;
} else if (_lm_head == node) {
_lm_head = node.lm_next;
}
if (node.lm_next != null) {
node.lm_next.lm_prev = node.lm_prev;
} else if (_lm_tail == node) {
_lm_tail = node.lm_prev;
}
node.lm_next = null;
node.lm_prev = null;
}
#endif
// Maintain iteration
if (with_iteration) {
if (node.iter_prev != null) {
node.iter_prev.iter_next = node.iter_next;
} else if (_iter_head == node) {
_iter_head = node.iter_next;
}
if (node.iter_next != null) {
node.iter_next.iter_prev = node.iter_prev;
} else if (_iter_tail == node) {
_iter_tail = node.iter_prev;
}
}
#if DEBUG
_dump ("End _remove_type2_node: %p(%s)".printf (node, (string) node.data));
#endif
}
#if DEBUG
public void _dump (string message) {
stdout.printf (">>>> %s\n", message);
stdout.printf ("A.length = %d:", _a.length);
foreach (Node<G>? node in _a) {
stdout.printf (" %p(%s);", node, node != null ? (string) node.data : null);
}
stdout.printf ("\n");
stdout.printf ("B.length = %d:", _b.length);
foreach (bool even in _b) {
stdout.printf (" %s;", even.to_string ());
}
stdout.printf ("\n");
stdout.printf ("LP:");
unowned NodePair<G>? pair = _lp_head;
while (pair != null) {
stdout.printf (" (%p(%s),%p(%s));", pair.node1, (string) pair.node1.data, pair.node2, (string) pair.node2.data);
pair = pair.lp_next;
}
stdout.printf ("\n");
stdout.printf ("LL:");
unowned Type1Node<G>? node = _ll_head;
while (node != null) {
stdout.printf (" %p(%s);", node, (string) node.data);
node = node.ll_next;
}
stdout.printf ("\n");
stdout.printf ("ITER:");
unowned Node<G>? inode_prev = null;
unowned Node<G>? inode = _iter_head;
while (inode != null) {
stdout.printf (" %p(%s);", inode, (string) inode.data);
assert (inode.iter_prev == inode_prev);
inode_prev = inode;
inode = inode.iter_next;
}
stdout.printf ("\n");
stdout.printf ("%s\n", _r != null ? _r.to_string () : null);
stdout.printf ("\n");
}
#endif
private abstract class Node<G> {
public G data;
public weak Node<G>? parent = null;
public int type1_children_count;
public Type1Node<G>? type1_children_head = null;
public Type1Node<G>? type1_children_tail = null;
public unowned Node<G>? iter_prev;
public unowned Node<G>? iter_next = null;
public bool pending_drop;
protected Node (G data, ref unowned Node<G>? head, ref unowned Node<G>? tail) {
this.data = data;
iter_prev = tail;
tail = this;
if (iter_prev != null) {
iter_prev.iter_next = this;
}
if (head == null) {
head = this;
}
}
public inline int degree () {
return type1_children_count;
}
#if DEBUG
public string children_to_string (int level = 0) {
StringBuilder builder = new StringBuilder ();
bool first = true;
Type1Node<G> child = type1_children_head;
while (child != null) {
if (!first) {
builder.append (",\n");
}
first = false;
builder.append (child.to_string (level));
child = child.brothers_next;
}
return builder.str;
}
public abstract string to_string (int level = 0);
#endif
}
private class Type1Node<G> : Node<G> {
public uint lost;
public weak Type1Node<G>? brothers_prev = null;
public Type1Node<G>? brothers_next = null;
public Type2Node<G>? type2_child = null;
public weak Type1Node<G>? ll_prev = null;
public Type1Node<G>? ll_next = null;
public weak NodePair<G>? pair = null;
public Type1Node (G data, ref unowned Node<G>? head, ref unowned Node<G>? tail) {
base (data, ref head, ref tail);
}
public inline void add (Type1Node<G> node) {
node.parent = this;
if (type1_children_head == null) {
type1_children_head = node;
} else {
node.brothers_prev = type1_children_tail;
}
if (type1_children_tail != null) {
type1_children_tail.brothers_next = node;
}
type1_children_tail = node;
type1_children_count++;
}
public inline void remove () {
if (brothers_prev == null) {
parent.type1_children_head = brothers_next;
} else {
brothers_prev.brothers_next = brothers_next;
}
if (brothers_next == null) {
parent.type1_children_tail = brothers_prev;
} else {
brothers_next.brothers_prev = brothers_prev;
}
parent.type1_children_count--;
parent = null;
brothers_prev = null;
brothers_next = null;
}
#if DEBUG
public override string to_string (int level = 0) {
StringBuilder builder = new StringBuilder ();
builder.append (string.nfill (level, '\t'));
builder.append ("(");
builder.append_printf("%p(%s)/%u", this, (string)data, lost);
if (type1_children_head != null || type2_child != null) {
builder.append (":\n");
}
if (type1_children_head != null) {
builder.append (children_to_string (level + 1));
}
if (type1_children_head != null && type2_child != null) {
builder.append (",\n");
}
if (type2_child != null) {
builder.append (type2_child.to_string (level + 1));
}
if (type1_children_head != null || type2_child != null) {
builder.append ("\n");
builder.append (string.nfill (level, '\t'));
}
builder.append (")");
return builder.str;
}
#endif
}
private class Type2Node<G> : Node<G> {
// For now we can't have type2 node other than R' (left for reference)
#if false
public weak Type2Node<G>? lm_prev = null;
public Type2Node<G>? lm_next = null;
#endif
public Type2Node (G data, ref unowned Node<G>? head, ref unowned Node<G>? tail) {
base (data, ref head, ref tail);
}
#if DEBUG
public override string to_string (int level = 0) {
StringBuilder builder = new StringBuilder ();
builder.append (string.nfill (level, '\t'));
builder.append_printf ("[%p(%s)", this, (string)data);
if (type1_children_head != null) {
builder.append (":\n");
builder.append (children_to_string (level + 1));
builder.append ("\n");
builder.append (string.nfill (level, '\t'));
}
builder.append ("]");
return builder.str;
}
#endif
}
private class DummyNode<G> : Node<G> {
public DummyNode (ref unowned Node<G>? prev_next, ref unowned Node<G>? next_prev, Node<G>? iter_prev, Node<G>? iter_next) {
#if DEBUG
base ("<<dummy>>", ref prev_next, ref next_prev);
#else
base (null, ref prev_next, ref next_prev);
#endif
this.iter_prev = iter_prev;
this.iter_next = iter_next;
prev_next = next_prev = this;
}
#if DEBUG
public override string to_string (int level = 0) {
StringBuilder builder = new StringBuilder ();
builder.append (string.nfill (level, '\t'));
builder.append ("%p<<dummy>>".printf(this));
return builder.str;
}
#endif
}
private class NodePair<G> {
public weak NodePair<G>? lp_prev = null;
public NodePair<G>? lp_next = null;
public Type1Node<G> node1 = null;
public Type1Node<G> node2 = null;
public NodePair (Type1Node<G> node1, Type1Node<G> node2) {
this.node1 = node1;
this.node2 = node2;
}
}
private class Iterator<G> : Object, Gee.Iterator<G> {
private PriorityQueue<G> queue;
private unowned Node<G>? position;
private unowned Node<G>? previous;
private int stamp;
public Iterator (PriorityQueue<G> queue) {
this.queue = queue;
this.position = null;
this.previous = null;
this.stamp = queue._stamp;
}
public bool next () {
unowned Node<G>? next = _get_next_node ();
if (next != null) {
previous = position;
position = next;
}
return next != null;
}
public bool has_next () {
return _get_next_node () != null;
}
private inline unowned Node<G>? _get_next_node () {
if (position != null) {
return position.iter_next;
} else {
return (previous != null) ? previous.iter_next : queue._iter_head;
}
}
public bool first () {
assert (stamp == queue._stamp);
position = queue._iter_head;
previous = null;
return position != null;
}
public new G get () {
assert (stamp == queue._stamp);
assert (position != null);
return position.data;
}
public void remove () {
assert (stamp == queue._stamp);
assert (position != null);
DummyNode<G> dn;
if (previous != null) {
dn = new DummyNode<G> (ref previous.iter_next, ref position.iter_prev, previous, position);
} else {
dn = new DummyNode<G> (ref queue._iter_head, ref position.iter_prev, null, position);
}
queue._delete (position);
position = null;
if (previous != null) {
previous.iter_next = dn.iter_next;
}
if (dn == queue._iter_head) {
queue._iter_head = dn.iter_next;
}
if (dn.iter_next != null) {
dn.iter_next.iter_prev = previous;
}
if (dn == queue._iter_tail) {
queue._iter_tail = previous;
}
stamp++;
assert (stamp == queue._stamp);
}
}
}
|