1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/////////////////////////////////////////////////////////////////////////////
// File: gnFastTranslator.h
// Purpose: Filter for all Sequences
// Description: translates, converts sequence
// Changes:
// Version: libGenome 0.5.1
// Author: Aaron Darling
// Modified by:
// Copyright: (c) Aaron Darling
// Licenses: See COPYING file for details
/////////////////////////////////////////////////////////////////////////////
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libGenome/gnFastTranslator.h"
#include <iostream>
#include <cstring>
using namespace std;
namespace genome {
// static data access, avoids static initialization order fiasco
const gnFastTranslator *gnFastTranslator::ProteinDNATranslator(){
const static gnFastTranslator* t_trans = new gnFastTranslator(ProteinDNATranslatorType);
return t_trans;
}
const gnFastTranslator *gnFastTranslator::DNAProteinTranslator(){
const static gnFastTranslator* t_trans = new gnFastTranslator(DNAProteinTranslatorType);
return t_trans;
}
// public:
gnFastTranslator::gnFastTranslator()
{
use_default = false;
m_defaultChar = 0;
}
gnFastTranslator::gnFastTranslator( const gnFastTranslator &sf )
{
m_name = sf.m_name;
use_default = sf.use_default;
m_defaultChar = sf.m_defaultChar;
m_transCache = sf.m_transCache;
}
gnFastTranslator::gnFastTranslator( gnTranslatorType t_type )
{
use_default = false;
m_defaultChar = 0;
switch(t_type){
case ProteinDNATranslatorType:
CacheTranslator(gnTranslator::ProteinDNATranslator(), "FLIMVPTAY.HQNKDECGSR", 1);
break;
case DNAProteinTranslatorType:
CacheTranslator(gnTranslator::DNAProteinTranslator(), "ACGTRYKMBVDHSWNX", 3);
break;
}
}
// gnSeqC
gnSeqC gnFastTranslator::Filter( const gnSeqC ch ) const{
/* for(uint32 i=0; i < m_inputTable.size(); i++){
if(m_inputTable[i].length() == 1)
if(compare->Contains(m_inputTable[i][0], ch))
return m_outputTable[i][0];
}
*/ return m_defaultChar;
}
void gnFastTranslator::Filter( gnSeqC** seq, gnSeqI& len ) const{
/* uint32 curpos = 0;
string output;
while(curpos < len){
uint32 i=0;
for(; i < m_inputTable.size(); i++){
//don't compare if there aren't enough chars
uint32 curlen = m_inputTable[i].length();
if(len - curpos < curlen)
continue;
if(compare->Contains(m_inputTable[i].data(), *seq + curpos, curlen)){
output += m_outputTable[i];
curpos += curlen;
break;
}
}
if(i == m_inputTable.size()){
//no match was found.
if(use_default) //fill with the default char?
output += m_defaultChar;
curpos++;
}
}
if(output.length() > len){
delete[] *seq;
*seq = new gnSeqC[output.length()];
}
len = output.length();
memcpy(*seq, output.data(), len);
*/}
// string
void gnFastTranslator::Filter( string &seq ) const{
uint32 curpos = 0, outpos = 0;
uint32 len = seq.length();
uint32 width = m_transCache.begin()->first.length();
uint32 out_width = m_transCache.begin()->second.length();
uint32 out_size = (seq.length() / width) * out_width + seq.length() % width + 1;
gnSeqC* output_array = new gnSeqC[out_size];
output_array[out_size-1] = 0;
string seq_upper;
while(curpos < len){
//transform to upper case
seq_upper = seq.substr(curpos, width);
for(uint32 i=0; i < seq_upper.size(); i++)
seq_upper[i] = toupper(seq_upper[i]);
map<string, string>::const_iterator iter = m_transCache.find(seq_upper);
if(iter == m_transCache.end()){
//no match was found.
if(use_default) //fill with the default char?
output_array[curpos] = m_defaultChar;
curpos++;
}else{
strcpy( output_array + outpos, iter->second.c_str() );
curpos += width;
outpos += out_width;
}
}
seq = output_array;
}
void gnFastTranslator::CacheTranslator(const gnTranslator* tranny, string inputs, const gnSeqI input_width){
string cur_input;
string cur_trans;
vector<gnSeqI> index;
gnSeqI cur_index = input_width;
//fill the index array with input_width 0's
for(gnSeqI curI = 0; curI < input_width; curI++)
index.push_back(0);
while(true){
//ensure the validity of our indices
cur_index = input_width - 1;
while(index[cur_index] == inputs.length()){
if(cur_index == 0){
return;
}
index[cur_index] = 0;
cur_index--;
index[cur_index]++;
continue;
}
//create a sequence to cache.
for(gnSeqI i = 0; i < input_width; i++){
cur_input += inputs[index[i]];
}
cur_trans = cur_input;
tranny->Filter(cur_trans);
m_transCache[cur_input] = cur_trans;
// m_transCache.insert(map<string, string>::value_type(cur_input, cur_trans));
// prepare for next time thru the loop
cur_input = "";
index[input_width - 1]++;
}
}
} // end namespace genome
|