1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
|
use strict;
use warnings;
package Geo::Coordinates::UTM;
use Carp;
use base 'Exporter';
our @EXPORT = qw( latlon_to_utm latlon_to_utm_force_zone
utm_to_latlon utm_to_mgrs
latlon_to_mgrs mgrs_to_utm mgrs_to_latlon
ellipsoid_info ellipsoid_names );
our $VERSION = '0.11';
use Math::Trig;
my $deg2rad = pi / 180;
my $rad2deg = 180 / pi;
# remove all markup from an ellipsoid name, to increase the chance
# that a match is found.
sub _cleanup_name($)
{ my $copy = lc(shift);
for($copy)
{ s/\([^)]+\)//g; # remove text between parantheses
s/[\s-]//g; # no blanks or dashes
}
$copy;
}
# Ellipsoid array (name,equatorial radius,square of eccentricity)
# Same data also as hash with key eq name (in variations)
my (@Ellipsoid, %Ellipsoid);
BEGIN { # Initialize this before other modules get a chance
@Ellipsoid =
( [ "Airy", 6377563, 0.00667054]
, [ "Australian National", 6378160, 0.006694542]
, [ "Bessel 1841", 6377397, 0.006674372]
, [ "Bessel 1841 Nambia", 6377484, 0.006674372]
, [ "Clarke 1866", 6378206, 0.006768658]
, [ "Clarke 1880", 6378249, 0.006803511]
, [ "Everest 1830 India", 6377276, 0.006637847]
, [ "Fischer 1960 Mercury", 6378166, 0.006693422]
, [ "Fischer 1968", 6378150, 0.006693422]
, [ "GRS 1967", 6378160, 0.006694605]
, [ "GRS 1980", 6378137, 0.00669438]
, [ "Helmert 1906", 6378200, 0.006693422]
, [ "Hough", 6378270, 0.00672267]
, [ "International", 6378388, 0.00672267]
, [ "Krassovsky", 6378245, 0.006693422]
, [ "Modified Airy", 6377340, 0.00667054]
, [ "Modified Everest", 6377304, 0.006637847]
, [ "Modified Fischer 1960", 6378155, 0.006693422]
, [ "South American 1969", 6378160, 0.006694542]
, [ "WGS 60", 6378165, 0.006693422]
, [ "WGS 66", 6378145, 0.006694542]
, [ "WGS-72", 6378135, 0.006694318]
, [ "WGS-84", 6378137, 0.00669438 ]
, [ "Everest 1830 Malaysia", 6377299, 0.006637847]
, [ "Everest 1956 India", 6377301, 0.006637847]
, [ "Everest 1964 Malaysia and Singapore", 6377304, 0.006637847]
, [ "Everest 1969 Malaysia", 6377296, 0.006637847]
, [ "Everest Pakistan", 6377296, 0.006637534]
, [ "Indonesian 1974", 6378160, 0.006694609]
, [ "Arc 1950", 6378249.145,0.006803481]
, [ "NAD 27",6378206.4,0.006768658]
, [ "NAD 83",6378137,0.006694384]
);
# calc ecc as
# a = semi major axis
# b = semi minor axis
# e^2 = (a^2-b^2)/a^2
# For clarke 1880 (Arc1950) a=6378249.145 b=6356514.966398753
# e^2 (40682062155693.23 - 40405282518051.34) / 40682062155693.23
# e^2 = 0.0068034810178165
foreach my $el (@Ellipsoid)
{ my ($name, $eqrad, $eccsq) = @$el;
$Ellipsoid{$name} = $el;
$Ellipsoid{_cleanup_name $name} = $el;
}
}
sub _valid_utm_zone($)
{ my $char = shift;
index("CDEFGHJKLMNPQRSTUVWX", $char) >= 0;
}
# Returns all pre-defined ellipsoid names, sorted alphabetically
sub ellipsoid_names()
{ map { $_->[0] } @Ellipsoid;
}
# Returns "official" name, equator radius and square eccentricity
# The specified name can be numeric (for compatibility reasons) or
# a more-or-less exact name
# Examples: my($name, $r, $sqecc) = ellipsoid_info 'wgs84';
# my($name, $r, $sqecc) = ellipsoid_info 'WGS 84';
# my($name, $r, $sqecc) = ellipsoid_info 'WGS-84';
# my($name, $r, $sqecc) = ellipsoid_info 'WGS-84 (new specs)';
# my($name, $r, $sqecc) = ellipsoid_info 22;
sub ellipsoid_info($)
{ my $id = shift;
my $el = $id !~ m/\D/
? $Ellipsoid[$id-1] # old system counted from 1
: $Ellipsoid{$id} || $Ellipsoid{_cleanup_name $id};
defined $el ? @$el : ();
}
# Expects Ellipsoid Number or name, Latitude, Longitude
# (Latitude and Longitude in decimal degrees)
# Returns UTM Zone, UTM Easting, UTM Northing
sub latlon_to_utm($$$)
{ my ($ellips, $latitude, $longitude) = @_;
croak "Longitude value ($longitude) invalid."
if $longitude < -180 || $longitude > 180;
my $long2 = $longitude - int(($longitude + 180)/360) * 360;
my $zone = _latlon_zone_number($latitude, $long2);
_latlon_to_utm($ellips, $zone, $latitude, $long2);
}
sub latlon_to_utm_force_zone($$$$)
{ my ($ellips, $zone, $latitude, $longitude) = @_;
croak "Longitude value ($longitude) invalid."
if $longitude < -180 || $longitude > 180;
my $long2 = $longitude - int(($longitude + 180)/360) * 360;
my ($zone_number) = $zone =~ /^(\d+)[CDEFGHJKLMNPQRSTUVWX]?$/i;
croak "Zone value ($zone) invalid."
unless defined($zone_number) && $zone_number <= 60;
_latlon_to_utm($ellips, $zone_number, $latitude, $long2);
}
sub _latlon_zone_number
{ my ($latitude, $long2) = @_;
my $zone = int( ($long2 + 180)/6) + 1;
if($latitude >= 56.0 && $latitude < 64.0 && $long2 >= 3.0 && $long2 < 12.0)
{ $zone = 32;
}
if($latitude >= 72.0 && $latitude < 84.0) {
$zone = ($long2 >= 0.0 && $long2 < 9.0) ? 31
: ($long2 >= 9.0 && $long2 < 21.0) ? 33
: ($long2 >= 21.0 && $long2 < 33.0) ? 35
: ($long2 >= 33.0 && $long2 < 42.0) ? 37
: $zone;
}
return $zone;
}
sub _latlon_to_utm
{ my ($ellips, $zone, $latitude, $long2) = @_;
my ($name, $radius, $eccentricity) = ellipsoid_info $ellips
or croak "Ellipsoid value ($ellips) invalid.";
my $lat_radian = $deg2rad * $latitude;
my $long_radian = $deg2rad * $long2;
my $k0 = 0.9996; # scale
my $longorigin = ($zone - 1)*6 - 180 + 3;
my $longoriginradian = $deg2rad * $longorigin;
my $eccentprime = $eccentricity/(1-$eccentricity);
my $N = $radius / sqrt(1-$eccentricity * sin($lat_radian)*sin($lat_radian));
my $T = tan($lat_radian) * tan($lat_radian);
my $C = $eccentprime * cos($lat_radian)*cos($lat_radian);
my $A = cos($lat_radian) * ($long_radian - $longoriginradian);
my $M = $radius
* ( ( 1 - $eccentricity/4 - 3 * $eccentricity * $eccentricity/64
- 5 * $eccentricity * $eccentricity * $eccentricity/256
) * $lat_radian
- ( 3 * $eccentricity/8 + 3 * $eccentricity * $eccentricity/32
+ 45 * $eccentricity * $eccentricity * $eccentricity/1024
) * sin(2 * $lat_radian)
+ ( 15 * $eccentricity * $eccentricity/256 +
45 * $eccentricity * $eccentricity * $eccentricity/1024
) * sin(4 * $lat_radian)
- ( 35 * $eccentricity * $eccentricity * $eccentricity/3072
) * sin(6 * $lat_radian)
);
my $utm_easting = $k0*$N*($A+(1-$T+$C)*$A*$A*$A/6
+ (5-18*$T+$T*$T+72*$C-58*$eccentprime)*$A*$A*$A*$A*$A/120)
+ 500000.0;
my $utm_northing= $k0 * ( $M + $N*tan($lat_radian) * ( $A*$A/2+(5-$T+9*$C+4*$C*$C)*$A*$A*$A*$A/24 + (61-58*$T+$T*$T+600*$C-330*$eccentprime) * $A*$A*$A*$A*$A*$A/720));
$utm_northing += 10000000.0 if $latitude < 0;
my $utm_letter
= ( 84 >= $latitude && $latitude >= 72) ? 'X'
: ( 72 > $latitude && $latitude >= 64) ? 'W'
: ( 64 > $latitude && $latitude >= 56) ? 'V'
: ( 56 > $latitude && $latitude >= 48) ? 'U'
: ( 48 > $latitude && $latitude >= 40) ? 'T'
: ( 40 > $latitude && $latitude >= 32) ? 'S'
: ( 32 > $latitude && $latitude >= 24) ? 'R'
: ( 24 > $latitude && $latitude >= 16) ? 'Q'
: ( 16 > $latitude && $latitude >= 8) ? 'P'
: ( 8 > $latitude && $latitude >= 0) ? 'N'
: ( 0 > $latitude && $latitude >= -8) ? 'M'
: ( -8 > $latitude && $latitude >= -16) ? 'L'
: (-16 > $latitude && $latitude >= -24) ? 'K'
: (-24 > $latitude && $latitude >= -32) ? 'J'
: (-32 > $latitude && $latitude >= -40) ? 'H'
: (-40 > $latitude && $latitude >= -48) ? 'G'
: (-48 > $latitude && $latitude >= -56) ? 'F'
: (-56 > $latitude && $latitude >= -64) ? 'E'
: (-64 > $latitude && $latitude >= -72) ? 'D'
: (-72 > $latitude && $latitude >= -80) ? 'C'
: croak "Latitude ($latitude) out of UTM range.";
$zone .= $utm_letter;
($zone, $utm_easting, $utm_northing);
}
# Expects Ellipsoid Number or name, UTM zone, UTM Easting, UTM Northing
# Returns Latitude, Longitude
# (Latitude and Longitude in decimal degrees, UTM Zone e.g. 23S)
sub utm_to_latlon($$$$)
{ my ($ellips, $zone, $easting, $northing) = @_;
my ($name, $radius, $eccentricity) = ellipsoid_info $ellips
or croak "Ellipsoid value ($ellips) invalid.";
my $zone_number = $zone;
my $zone_letter = chop $zone_number;
croak "UTM zone ($zone_letter) invalid."
unless _valid_utm_zone $zone_letter;
my $k0 = 0.9996;
my $x = $easting - 500000; # Remove Longitude offset
my $y = $northing;
# Set hemisphere (1=Northern, 0=Southern)
my $hemisphere = $zone_letter ge 'N';
$y -= 10000000.0 unless $hemisphere; # Remove Southern Offset
my $longorigin = ($zone_number - 1)*6 - 180 + 3;
my $eccPrimeSquared = ($eccentricity)/(1-$eccentricity);
my $M = $y/$k0;
my $mu = $M/($radius*(1-$eccentricity/4-3*$eccentricity*$eccentricity/64-5*$eccentricity*$eccentricity*$eccentricity/256));
my $e1 = (1-sqrt(1-$eccentricity))/(1+sqrt(1-$eccentricity));
my $phi1rad = $mu+(3*$e1/2-27*$e1*$e1*$e1/32)*sin(2*$mu)+(21*$e1*$e1/16-55*$e1*$e1*$e1*$e1/32)*sin(4*$mu)+(151*$e1*$e1*$e1/96)*sin(6*$mu);
my $phi1 = $phi1rad*$rad2deg;
my $N1 = $radius/sqrt(1-$eccentricity*sin($phi1rad)*sin($phi1rad));
my $T1 = tan($phi1rad)*tan($phi1rad);
my $C1 = $eccentricity*cos($phi1rad)*cos($phi1rad);
my $R1 = $radius * (1-$eccentricity)
/ ((1-$eccentricity*sin($phi1rad)*sin($phi1rad))**1.5);
my $D = $x/($N1*$k0);
my $Latitude = $phi1rad-($N1*tan($phi1rad)/$R1)*($D*$D/2-(5+3*$T1+10*$C1-4*$C1*$C1-9*$eccPrimeSquared)*$D*$D*$D*$D/24+(61+90*$T1+298*$C1+45*$T1*$T1-252*$eccPrimeSquared-3*$C1*$C1)*$D*$D*$D*$D*$D*$D/720);
$Latitude = $Latitude * $rad2deg;
my $Longitude = ($D-(1+2*$T1+$C1)*$D*$D*$D/6+(5-2*$C1+28*$T1-3*$C1*$C1+8*$eccPrimeSquared+24*$T1*$T1)*$D*$D*$D*$D*$D/120)/cos($phi1rad);
$Longitude = $longorigin + $Longitude * $rad2deg;
($Latitude, $Longitude);
}
sub utm_to_mgrs($$$)
{ my ($zone,$easting,$northing) = @_;
my $zone_number = $zone;
my $zone_letter = chop $zone_number;
croak "UTM zone ($zone_letter) invalid."
unless _valid_utm_zone $zone_letter;
my $northing_zones="ABCDEFGHJKLMNPQRSTUV";
my $rnd_north=sprintf("%d",$northing);
my $north_split=length($rnd_north)-5;
$north_split=0 if $north_split < 0;
my $mgrs_north=substr($rnd_north,(length($rnd_north)-5));
$rnd_north -=2000000 while ($rnd_north >= 2000000);
$rnd_north+=2000000 if $rnd_north < 0;
my $num_north=int($rnd_north/100000);
$num_north+=5 if not ($zone_number % 2);
$num_north-=20 until $num_north <20;
my $lett_north=substr($northing_zones,$num_north,1);
my $rnd_east=sprintf("%d",$easting);
my $east_split=length($rnd_east)-5;
$east_split=0 if $east_split < 0;
my $mgrs_east=substr($rnd_east,(length($rnd_east)-5));
my $num_east=substr($rnd_east,0,(length($rnd_east)-5));
$num_east=0 if not $num_east;
my $mgrs_zone=$zone_number;
$mgrs_zone-=3 until $mgrs_zone < 4;
# zones are 6deg wide, mgrs letters are 18deg = 8 per zone
# calculate which zone required
my $easting_zones
= ( $mgrs_zone == 1) ? 'ABCDEFGH'
: ( $mgrs_zone == 2) ? 'JKLMNPQR'
: ( $mgrs_zone == 3) ? 'STUVWXYZ'
: croak "Could not calculate MGRS zone.";
$num_east--;
my $lett_east=substr($easting_zones,$num_east,1) or croak "Could not detect Easting Zone for MGRS coordinate";
my $MGRS="$zone$lett_east$lett_north$mgrs_east$mgrs_north";
($MGRS);
}
sub latlon_to_mgrs($$$)
{ my ($ellips, $latitude, $longitude) = @_;
my ($zone,$x_coord,$y_coord)=latlon_to_utm($ellips, $latitude, $longitude);
my $mgrs_string=utm_to_mgrs($zone,$x_coord,$y_coord);
($mgrs_string);
}
sub mgrs_to_utm($)
{ my ($mgrs_string) = @_;
my $zone = substr($mgrs_string,0,2);
$mgrs_string = "0$mgrs_string" if !($zone =~ /^\d+$/);
$zone = substr($mgrs_string,0,3);
my $zone_number = $zone;
my $zone_letter = chop $zone_number;
croak "UTM zone ($zone_letter) invalid."
unless _valid_utm_zone $zone_letter;
my $first_letter = substr($mgrs_string,3,1);
croak "MGRS zone ($first_letter) invalid."
unless $first_letter =~ /[ABCDEFGHJKLMNPQRSTUVWXYZ]/;
my $second_letter = substr($mgrs_string,4,1);
croak "MGRS zone ($second_letter) invalid."
unless $second_letter =~ /[ABCDEFGHJKLMNPQRSTUV]/;
my $coords=substr($mgrs_string,5);
my $coord_len=length($coords);
croak "MGRS coords ($coords) invalid."
unless ((($coord_len > 0) and ($coord_len <= 10)) and !($coord_len % 2));
$coord_len=int($coord_len/2);
my $x_coord=substr($coords,0,$coord_len);
my $y_coord=substr($coords,$coord_len);
$x_coord*=10 ** (5 - $coord_len);
$y_coord*=10 ** (5 - $coord_len);
my $east_pos
= ( $first_letter =~ /[ABCDEFGH]/) ? index('ABCDEFGH',$first_letter)
: ( $first_letter =~ /[JKLMNPQR]/) ? index('JKLMNPQR',$first_letter)
: ( $first_letter =~ /[STUVWXYZ]/) ? index('STUVWXYZ',$first_letter)
: croak "Could not calculate MGRS Easting zone.";
croak "MGRS Letter $first_letter invalid." if $east_pos < 0;
$east_pos++;
$east_pos*=100000;
$x_coord+=$east_pos;
my $northing_zones="ABCDEFGHJKLMNPQRSTUV";
my $north_pos=index($northing_zones,$second_letter);
croak "MGRS Letter $second_letter invalid." if $north_pos < 0;
$north_pos++;
$north_pos-=5 if not ($zone_number % 2);
$north_pos+=20 until $north_pos > 0;
if ($zone_letter =~ /[NPQRSTUVWX]/) {
# Northern hemisphere
my $tmpNorth=index('NPQRSTUVWX',$zone_letter);
$tmpNorth++;
$tmpNorth*=8;
$tmpNorth*=10/9;
$tmpNorth=int((($tmpNorth-$north_pos)/20)+0.5)*20;
$north_pos+=$tmpNorth;
$north_pos*=100000;
$north_pos-=100000;
$y_coord+=$north_pos;
}
else {
#Southern Hemisphere
my $tmpNorth=index('CDEFGHJKLM',$zone_letter);
$tmpNorth*=8;
$tmpNorth*=10/9;
$tmpNorth=int((($tmpNorth-$north_pos)/20)+0.5)*20;
$north_pos+=$tmpNorth;
$north_pos*=100000;
$north_pos-=100000;
$north_pos+=2000000 if $zone_letter ne "C";
$y_coord+=$north_pos;
}
($zone,$x_coord,$y_coord);
}
sub mgrs_to_latlon($$)
{ my ($ellips, $mgrs_string) = @_;
my ($zone,$x_coord,$y_coord)=mgrs_to_utm($mgrs_string);
my ($latitude,$longitude)=utm_to_latlon($ellips,$zone,$x_coord,$y_coord);
($latitude,$longitude);
}
1;
__END__
=head1 NAME
Geo::Coordinates::UTM - Perl extension for Latitiude Longitude conversions.
=head1 SYNOPSIS
use Geo::Coordinates::UTM;
my ($zone,$easting,$northing)=latlon_to_utm($ellipsoid,$latitude,$longitude);
my ($latitude,$longitude)=utm_to_latlon($ellipsoid,$zone,$easting,$northing);
my ($zone,$easting,$northing)=mgrs_to_utm($mgrs);
my ($latitude,$longitude)=mgrs_to_latlon($ellipsoid,$mgrs);
my ($mgrs)=utm_to_mgrs($zone,$easting,$northing);
my ($mgrs)=latlon_to_mgrs($ellipsoid,$latitude,$longitude);
my @ellipsoids=ellipsoid_names;
my($name, $r, $sqecc) = ellipsoid_info 'WGS-84';
=head1 DESCRIPTION
This module will translate latitude longitude coordinates to Universal Transverse Mercator(UTM) coordinates and vice versa.
=head2 Mercator Projection
The Mercator projection was first invented to help mariners. They needed to be able to take a course and know the distance traveled, and draw a line on the map which showed the day's journey. In order to do this, Mercator invented a projection which preserved length, by projecting the earth's surface onto a cylinder, sharing the same axis as the earth itself.
This caused all Latitude and Longitude lines to intersect at a 90 degree angle, thereby negating the problem that longitude lines get closer together at the poles.
=head2 Transverse Mercator Projection
A Transverse Mercator projection takes the cylinder and turns it on its side. Now the cylinder's axis passes through the equator, and it can be rotated to line up with the area of interest. Many countries use Transverse Mercator for their grid systems.
=head2 Universal Transverse Mercator
The Universal Transverse Mercator(UTM) system sets up a universal world wide system for mapping. The Transverse Mercator projection is used, with the cylinder in 60 positions. This creates 60 zones around the world.
Positions are measured using Eastings and Northings, measured in meters, instead of Latitude and Longitude. Eastings start at 500,000 on the centre line of each zone.
In the Northern Hemisphere, Northings are zero at the equator and increase northward. In the Southern Hemisphere, Northings start at 10 million at the equator, and decrease southward. You must know which hemisphere and zone you are in to interpret your location globally.
Distortion of scale, distance, direction and area increase away from the central meridian.
UTM projection is used to define horizontal positions world-wide by dividing the surface of the Earth into 6 degree zones, each mapped by the Transverse Mercator projection with a central meridian in the center of the zone.
UTM zone numbers designate 6 degree longitudinal strips extending from 80 degrees South latitude to 84 degrees North latitude. UTM zone characters designate 8 degree zones extending north and south from the equator. Eastings are measured from the central meridian (with a 500 km false easting to insure positive coordinates). Northings are measured from the equator (with a 10,000 km false northing for positions south of the equator).
UTM is applied separately to the Northern and Southern Hemisphere, thus within a single UTM zone, a single X / Y pair of values will occur in both the Northern and Southern Hemisphere.
To eliminate this confusion, and to speed location of points, a UTM zone is sometimes subdivided into 20 zones of Latitude. These grids can be further subdivided into 100,000 meter grid squares with double-letter designations. This subdivision by Latitude and further division into grid squares is generally referred to as the Military Grid Reference System (MGRS).
The unit of measurement of UTM is always meters and the zones are numbered from 1 to 60 eastward, beginning at the 180th meridian.
The scale distortion in a north-south direction parallel to the central meridian (CM) is constant However, the scale distortion increases either direction away from the CM. To equalize the distortion of the map across the UTM zone, a scale factor of 0.9996 is applied to all distance measurements within the zone. The distortion at the zone boundary, 3 degrees away from the CM is approximately 1%.
=head2 Datums and Ellipsoids
Unlike local surveys, which treat the Earth as a plane, the precise determination of the latitude and longitude of points over a broad area must take into account the actual shape of the Earth. To achieve the precision necessary for accurate location, the Earth cannot be assumed to be a sphere. Rather, the Earth's shape more closely approximates an ellipsoid (oblate spheroid): flattened at the poles and bulging at the Equator. Thus the Earth's shape, when cut through its polar axis, approximates an ellipse.
A "Datum" is a standard representation of shape and offset for coordinates, which includes an ellipsoid and an origin. You must consider the Datum when working with geospatial data, since data with two different Datum will not line up. The difference can be as much as a kilometer!
=head1 EXAMPLES
A description of the available ellipsoids and sample usage of the conversion routines follows
=head2 Ellipsoids
The Ellipsoids available are as follows:
=over 6
=item 1 Airy
=item 2 Australian National
=item 3 Bessel 1841
=item 4 Bessel 1841 (Nambia)
=item 5 Clarke 1866
=item 6 Clarke 1880
=item 7 Everest 1830 (India)
=item 8 Fischer 1960 (Mercury)
=item 9 Fischer 1968
=item 10 GRS 1967
=item 11 GRS 1980
=item 12 Helmert 1906
=item 13 Hough
=item 14 International
=item 15 Krassovsky
=item 16 Modified Airy
=item 17 Modified Everest
=item 18 Modified Fischer 1960
=item 19 South American 1969
=item 20 WGS 60
=item 21 WGS 66
=item 22 WGS-72
=item 23 WGS-84
=item 24 Everest 1830 (Malaysia)
=item 25 Everest 1956 (India)
=item 26 Everest 1964 (Malaysia and Singapore)
=item 27 Everest 1969 (Malaysia)
=item 28 Everest (Pakistan)
=item 29 Indonesian 1974
=item 30 Arc 1950
=item 30 NAD 27
=item 30 NAD 83
=back
=head2 ellipsoid_names
The ellipsoids can be accessed using ellipsoid_names. To store thes into an array you could use
my @names = ellipsoid_names;
=head2 ellipsoid_info
Ellipsoids may be called either by name, or number. To return the ellipsoid information, ( "official" name, equator radius and square eccentricity) you can use ellipsoid_info and specify a name. The specified name can be numeric (for compatibility reasons) or a more-or-less exact name. Any text between parentheses will be ignored.
my($name, $r, $sqecc) = ellipsoid_info 'wgs84';
my($name, $r, $sqecc) = ellipsoid_info 'WGS 84';
my($name, $r, $sqecc) = ellipsoid_info 'WGS-84';
my($name, $r, $sqecc) = ellipsoid_info 'WGS-84 (new specs)';
my($name, $r, $sqecc) = ellipsoid_info 23;
=head2 latlon_to_utm
Latitude values in the southern hemisphere should be supplied as negative values (e.g. 30 deg South will be -30). Similarly Longitude values West of the meridian should also be supplied as negative values. Both latitude and longitude should not be entered as deg,min,sec but as their decimal equivalent, e.g. 30 deg 12 min 22.432 sec should be entered as 30.2062311
The ellipsoid value should correspond to one of the numbers above, e.g. to use WGS-84, the ellipsoid value should be 23
For latitude 57deg 49min 59.000sec North
longitude 02deg 47min 20.226sec West
using Clarke 1866 (Ellipsoid 5)
($zone,$east,$north)=latlon_to_utm('clarke 1866',57.803055556,-2.788951667)
returns
$zone = 30V
$east = 512543.777159849
$north = 6406592.20049111
=head2 latlon_to_utm_force_zone
On occasions, it is necessary to map a pair of (latitude, longitude)
coordinates to a predefined zone. This function allows to select the
projection zone as follows:
($zone, $east, $north)=latlon_to_utm('international', $zone_number,
$latitude, $longitude)
For instance, Spain territory goes over zones 29, 30 and 31 but
sometimes it is convenient to use the projection corresponding to zone
30 for all the country.
Santiago de Compostela is at 42deg 52min 57.06sec North, 8deg 32min 28.70sec West
($zone, $east, $norh)=latlon_to_utm('international', 42.882517, -8.541306)
returns
$zone = 29T
$east = 537460.331
$north = 4747955.991
but forcing the conversion to zone 30:
($zone, $east, $norh)=latlon_to_utm_force_zone('international',
30, 42.882517, -8.541306)
returns
$zone = 30T
$east = 47404.442
$north = 4762771.704
=head2 utm_to_latlon
Reversing the above example,
($latitude,$longitude)=utm_to_latlon(5,'30V',512543.777159849,6406592.20049111)
returns
$latitude = 57.8030555601332
$longitude = -2.7889516669741
which equates to
latitude 57deg 49min 59.000sec North
longitude 02deg 47min 20.226sec West
=head2 latlon_to_mgrs
Latitude values in the southern hemisphere should be supplied as negative values (e.g. 30 deg South will be -30). Similarly Longitude values West of the meridian should also be supplied as negative values. Both latitude and longitude should not be entered as deg,min,sec but as their decimal equivalent, e.g. 30 deg 12 min 22.432 sec should be entered as 30.2062311
The ellipsoid value should correspond to one of the numbers above, e.g. to use WGS-84, the ellipsoid value should be 23
For latitude 57deg 49min 59.000sec North
longitude 02deg 47min 20.226sec West
using WGS84 (Ellipsoid 23)
($mgrs)=latlon_to_mgrs(23,57.8030590197684,-2.788956799)
returns
$mgrs = 30VWK1254306804
=head2 mgrs_to_latlon
Reversing the above example,
($latitude,$longitude)=mgrs_to_latlon(23,'30VWK1254306804')
returns
$latitude = 57.8030590197684
$longitude = -2.788956799645
=head2 mgrs_to_utm
Similarly it is possible to convert MGRS directly to UTM
($zone,$easting,$northing)=mgrs_to_utm('30VWK1254306804')
returns
$zone = 30V
$easting = 512543
$northing = 6406804
=head2 utm_to_mgrs
and the inverse converting from UTM yo MGRS is done as follows
($mgrs)=utm_to_mgrs('30V',512543,6406804);
returns
$mgrs = 30VWK1254306804
=head1 AUTHOR
Graham Crookham, grahamc@cpan.org
=head1 THANKS
Thanks go to the following:
Felipe Mendonca Pimenta for helping out with the Southern hemisphere testing.
Michael Slater for discovering the Escape \Q bug.
Mark Overmeer for the ellipsoid_info routines and code review.
Lok Yan for the >72deg. N bug.
Salvador Fandino for the forced zone UTM and additional tests
Matthias Lendholt for modifications to MGRS calculations
Peder Stray for the short MGRS patch
=head1 COPYRIGHT
Copyright (c) 2000,2002,2004,2007,2010,2013 by Graham Crookham. All rights reserved.
This package is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.
=cut
|