1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists.impl.adt;
import java.util.Iterator;
/**
* A Barcode is an ADT to replace the more general CompressableList
* ADT. CompressableList provides list compression capabilites that allow
* a list to be accessed by both the real index and a compressed index.
* The compressed index corresponds to the index of the current value as
* though no nulls existed in the list.
*
* <p>This provides a huge performance boost over ArrayList on partially empty
* lists. However, the CompressableList is one of the volatile implementation
* classes for internal development and isn't the best structure for the current
* usage. The GlazedLists use CompressableList to store only three values:
* Boolean.TRUE, Boolean.FALSE, and null. As such, it was slower and more
* memory intensive than it could be due to its general purpose design.
*
* <p>The Barcode is designed such that a list of n elements of the same
* colour will contain at most one node for BLACK and no nodes for WHITE.
* This will improve the performance and scalability of the GlazedLists
* which currently make use of CompressableList.
*
* <p>Barcode does not support more than two values stored in the list.
* Three different values are used by one of the GlazedLists at this time.
* Until UniqueList is refactored to make use of only two values, Barcode
* cannot completely replace CompressableList and they will exist in parallel.
*
* <p>In an effort to maximize performance this ADT does NOT validate that arguments
* passed to methods are valid in any way. While this adds inherent risk to
* the use of this code, this is a volatile implementation class. As such, it
* should only be used for internal GlazedList development. It is up to the
* calling code to do any argument validation which may be necessary.
*
* <p>Every effort has been made to squeeze the highest performance and smallest
* footprint out of this data structure. These benefits hopefully don't come at
* the cost of code clarity or maintainability. The memory usage of this ADT
* is bound to the number of sequences of BLACK elements. WHITE elements
* have no memory impact on the data structure.
*
*
* @author <a href="mailto:kevin@swank.ca">Kevin Maltby</a>
*
*/
public final class Barcode {
/** barcode colour constants */
public static final Object WHITE = Boolean.FALSE;
public static final Object BLACK = Boolean.TRUE;
/** the root of the underlying tree */
private BarcodeNode root = null;
/** the size of the trailing whitespace */
private int whiteSpace = 0;
/** the size of tree */
private int treeSize = 0;
/**
* Prints internal debug information for this barcode
*/
public void printDebug() {
System.out.println("\nTotal Size: " + size());
System.out.println("Trailing Whitespace : " + whiteSpace);
System.out.println("Tree Size: " + treeSize);
System.out.println("Tree Structure:\n" + root);
}
/**
* Validates the barcode's internal structure
*/
public void validate() {
if(root != null) root.validate();
}
/**
* Gets the size of this barcode
*/
public int size() {
return treeSize + whiteSpace;
}
/**
* Whether or not this barcode is empty
*/
public boolean isEmpty() {
return size() == 0;
}
/**
* Gets the size of the white portion of this barcode
*/
public int whiteSize() {
return root == null ? whiteSpace : root.whiteSize() + whiteSpace;
}
/**
* Gets the size of the black portion of this barcode
*/
public int blackSize() {
return root == null ? 0 : root.blackSize();
}
/**
* Gets the size of the given colour portion of this barcode
*/
public int colourSize(Object colour) {
if(colour == WHITE) return whiteSize();
else return blackSize();
}
/**
* Inserts a sequence of the specified colour into the barcode
*/
public void add(int index, Object colour, int length) {
if(colour == WHITE) addWhite(index, length);
else addBlack(index, length);
}
/**
* Inserts a sequence of white into the list
*/
public void addWhite(int index, int length) {
if(length < 0) throw new IllegalStateException();
if(length == 0) return;
// Adding to the trailing whitespace
if(root == null || index >= treeSize) {
whiteSpace += length;
// Adding whitespace to the actual list
} else {
root.insertWhite(index, length);
treeSizeChanged();
}
}
/**
* Inserts a sequence of black into the list
*/
public void addBlack(int index, int length) {
if(length < 0) throw new IllegalArgumentException();
if(length == 0) return;
// Make a new root
if(root == null) {
root = new BarcodeNode(this, null, length, index);
treeSize = index + length;
whiteSpace -= index;
// Add in the trailing whitespace
} else if(index >= treeSize) {
int movingWhitespace = index - treeSize;
whiteSpace -= movingWhitespace;
root.insertBlackAtEnd(length, movingWhitespace);
treeSizeChanged();
// Add values to the actual list
} else {
root.insertBlack(index, length);
treeSizeChanged();
}
}
/**
* Gets the value in this list at the given index
*/
public Object get(int index) {
if(getBlackIndex(index) == -1) return WHITE;
return BLACK;
}
/**
* Sets all of the values between index and index + length to either
* WHITE or BLACK depending on the value of colour
*
* @param colour Determines which colour to set the values in the range
* to. Valid values for colour are <code>Barcode.WHITE</code> and
* <code>Barcode.BLACK</code>.
*/
public void set(int index, Object colour, int length) {
if(length < 1) throw new IllegalArgumentException();
// The set affects the trailing whitespace
int trailingChange = index > treeSize - 1 ? length : index + length - treeSize;
if(trailingChange > 0) {
if(colour == BLACK) {
whiteSpace -= trailingChange;
addBlack(index, trailingChange);
}
length -= trailingChange;
if(length == 0) return;
}
// The set affects the list
if(root != null) {
root.set(index, colour, length);
if(root != null) treeSizeChanged();
}
}
/**
* Sets all of the values between index and index + length to WHITE
*/
public void setWhite(int index, int length) {
set(index, WHITE, length);
}
/**
* Sets all of the values between index and index + length to WHITE
*/
public void setBlack(int index, int length) {
set(index, BLACK, length);
}
/**
* Removes the values from the given index to index + length
*/
public void remove(int index, int length) {
if(length < 1) throw new IllegalArgumentException();
// The remove affects the trailing whitespace
int trailingChange = index > treeSize ? length : index + length - treeSize;
if(trailingChange > 0) {
whiteSpace -= trailingChange;
length -= trailingChange;
}
// The remove occurs in the actual list
if(root != null && index < treeSize) {
int oldTreeSize = -1;
while(length > 0) {
oldTreeSize = treeSize;
root.remove(index, length);
if(root != null) treeSizeChanged();
length -= (oldTreeSize - treeSize);
}
if(root != null) treeSizeChanged();
}
}
/**
* Clears the list
*/
public void clear() {
treeSize = 0;
whiteSpace = 0;
root = null;
}
/**
* Gets the root for this Barcode. This method is exposed for
* Iterators on Barcode whose set() operations may create a
* root node on a Barcode where none existed.
*/
BarcodeNode getRootNode() {
return root;
}
/**
* Sets the root for this list. This method is exposed for the
* BarcodeNode in the event that the list's root is involved in
* an AVL rotation.
*/
void setRootNode(BarcodeNode root) {
this.root = root;
if(root == null) treeSize = 0;
}
/**
* Gets the size of the underlying tree structure for this Barcode. This
* method is exposed for Iterators on Barcode who would otherwise have to
* maintain the state of treeSize themselves.
*/
int treeSize() {
return treeSize;
}
/**
* Notifies the list that the underlying list size has changed. This method
* is exposed for BarcodeNode to propagate size adjustments.
*/
void treeSizeChanged() {
treeSize = root.size();
}
/**
* Gets the real index of an element given the black index or white index.
*/
public int getIndex(int colourIndex, Object colour) {
// Get the real index of a WHITE element
if(colour == WHITE) {
// There are no black elements
if(root == null) {
return colourIndex;
// Retrieving from the trailing whitespace with a tree
} else if(colourIndex >= root.whiteSize()) {
return colourIndex - root.whiteSize() + treeSize;
// The index maps to an element in the tree
} else {
return root.getIndexByWhiteIndex(colourIndex);
}
// Get the real index of a BLACK element
} else {
return root.getIndexByBlackIndex(colourIndex);
}
}
/**
* Gets the colour-based index of the element with the given real
* index.
*
* @param index the real index.
* @param colour the colour to retrieve the colour-based index for.
*
* @return The colour-based index of the element at index or -1 if that
* element does not match the given colour.
*/
public int getColourIndex(int index, Object colour) {
if(colour == WHITE) return getWhiteIndex(index);
else return getBlackIndex(index);
}
/**
* Gets the white index of the node with the given real
* index.
*
* @param index specifies the real index.
*
* @return The white index of the element at index or -1 if that element is BLACK.
*/
public int getWhiteIndex(int index) {
// Get a white index from the list
if(root != null && index < treeSize) return root.getWhiteIndex(index);
// There are only white indexes in the trailing whitespace
else {
if(root != null) return index - treeSize + root.whiteSize();
else return index;
}
}
/**
* Gets the black index of the node with the given real
* index.
*
* @param index specifies the real index.
*
* @return The black index of the element at index or -1 if that element is WHITE.
*/
public int getBlackIndex(int index) {
if(root != null && index < treeSize) return root.getBlackIndex(index);
else return -1;
}
/**
* Gets the colour-based index of the element with the given real index or
* the colour-based index of the previous or next element matching the given
* colour if that element is of the opposite colour.
*
* @param left true for opposite colour elements to return the colour-based
* index of the first matching element before it in the list. Such
* values will range from <code>-1</code> through <code>size()-1</code>.
* False for opposite colour elements to return the colour-based index
* of the first matching element after it in the list. Such values will
* range from <code>0</code> through <code>size()</code>.
*/
public int getColourIndex(int index, boolean left, Object colour) {
if(colour == WHITE) return getWhiteIndex(index, left);
else return getBlackIndex(index, left);
}
/**
* Gets the white index of the element with the given real index or
* the white index of the previous or next WHITE element if that element
* is BLACK.
*
* @param left true for BLACK elements to return the white index of the
* first WHITE element before it in the list. Such values will range
* from <code>-1</code> through <code>size()-1</code>. False for BLACK
* elements to return the white index of the first WHITE element after
* it in the list. Such values will range from <code>0</code> through
* <code>size()</code>.
*/
public int getWhiteIndex(int index, boolean left) {
if(root == null) return index;
else if(index >= treeSize) return index - treeSize + root.whiteSize();
else return root.getWhiteIndex(index, left);
}
/**
* Gets the black index of the element with the given real index or
* the black index of the previous or next BLACK element if that element
* is WHITE.
*
* @param left true for WHITE elements to return the black index of the
* first BLACK element before it in the list. Such values will range
* from <code>-1</code> through <code>size()-1</code>. False for WHITE
* elements to return the black index of the first BLACK element after
* it in the list. Such values will range from <code>0</code> through
* <code>size()</code>.
*/
public int getBlackIndex(int index, boolean left) {
// there is no tree
if(root == null) {
if(left) return -1;
else return 0;
// if it is beyond the tree
} else if(index >= treeSize) {
if(left) return root.blackSize() - 1;
return root.blackSize();
// get from the tree
} else {
return root.getBlackIndex(index, left);
}
}
/**
* Gets the index of the WHITE element at whiteIndex relative to the WHITE
* element after the previous BLACK element or the start of the list if no
* BLACK element exists before this node.
*/
public int getWhiteSequenceIndex(int whiteIndex) {
// There is no tree sequence is beyond the tree
if(root == null) {
return whiteIndex;
// The sequence is beyond the tree
} else if(whiteIndex >= root.whiteSize()) {
return whiteIndex - root.whiteSize();
// lookup the sequence index within the tree
} else {
return root.getWhiteSequenceIndex(whiteIndex);
}
}
/**
* This method exists for CollectionList which needs a way to call
* getBlackIndex(index, true) with a white-centric index.
*/
public int getBlackBeforeWhite(int whiteIndex) {
// there is no tree
if(root == null) {
return -1;
// starting from beyond the tree
} else if(whiteIndex >= root.whiteSize()) {
return root.blackSize() - 1;
// the index is from within the tree
} else {
return root.getBlackBeforeWhite(whiteIndex);
}
}
/**
* Finds a sequence of the given colour that is at least size elements
* in length.
*
* @param size the minimum size of a matching sequence.
*
* @return The natural index of the first element in the sequence or -1 if
* no sequences of that length exist.
*/
public int findSequenceOfMinimumSize(int size, Object colour) {
// there is no tree
if(root == null) {
// There are no black sequences
if(colour == BLACK) return -1;
// The trailing whitespace matches
else if(whiteSpace >= size) return 0;
// nothing matches
else return -1;
// focus only within the tree
} else if(colour == BLACK) {
return root.findSequenceOfMinimumSize(size, colour);
// check the tree first, if it fails check the trailing whitespace
} else {
int result = root.findSequenceOfMinimumSize(size, colour);
if(result == -1 && whiteSpace >= size) result = treeSize;
return result;
}
}
/**
* Provides a specialized {@link Iterator} that iterates over a
* {@link Barcode} to provide high performance access to {@link Barcode}
* functionality.
*/
public BarcodeIterator iterator() {
return new BarcodeIterator(this);
}
public String toString() {
StringBuffer result = new StringBuffer();
for(BarcodeIterator bi = iterator(); bi.hasNext(); ) {
result.append(bi.next() == Barcode.BLACK ? "X" : "_");
}
return result.toString();
}
}
|