1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists;
import ca.odell.glazedlists.event.ListEvent;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
import java.util.RandomAccess;
/**
* A SequenceList contains values in adjacent indices which occur at predictable
* intervals from each other. A simple SequenceList could be:
* <pre> {-10, -5, 0, 5, 10, 15} </pre>
*
* while a more sophisticated example could be:
* <pre> {Jun 1, Jul 1, Aug 1, Sep 1, Oct 1} </pre>
*
* As long as the values can be ordered via a {@link Comparator} and a
* {@link Sequencer} can be implemented to reliably produce the next or previous
* value in a sequence using only some value from the source list.
*
* <p>SequenceList is a readonly list; calling any write method on this list
* will produce an {@link UnsupportedOperationException}.
*
* <p>The start and end values of the sequence are the smallest sequence values
* which maintain the invariant that:
* <code>sequence start <= each value in the source list <= sequence end</code>
*
* <p><strong><font color="#FF0000">Warning:</font></strong> This class is
* thread ready but not thread safe. See {@link EventList} for an example
* of thread safe code.
*
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0">
* <tr class="TableHeadingColor"><td colspan=2><font size="+2"><b>EventList Overview</b></font></td></tr>
* <tr><td class="TableSubHeadingColor"><b>Writable:</b></td><td>no</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Concurrency:</b></td><td>thread ready, not thread safe</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Performance:</b></td><td>reads: O(1)</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Memory:</b></td><td>O(N)</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Unit Tests:</b></td><td>SequenceListTest</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Issues:</b></td><td>N/A</td></tr>
* </table>
*
* @author James Lemieux
*/
public final class SequenceList<E> extends TransformedList<E,E> implements RandomAccess {
/** The values participating in the sequence. */
private final List<E> sequence = new ArrayList<E>();
/** The comparator that defines the order of the source and sequence values. */
private final Comparator<? super E> comparator;
/**
* The object containing the logic which produces next and previous
* sequence values by inspecting any source value.
*/
private final Sequencer<E> sequencer;
/**
* Constructs a SequenceList containing a sequence of values produced by
* the <code>sequencer</code> which cover the range of values contained
* within the <code>source</code>.
*
* @param source the raw values to build a sequence around
* @param sequencer the logic to produce sequence values relative to a value
*/
public SequenceList(EventList<E> source, Sequencer<E> sequencer) {
this(source, sequencer, (Comparator<E>) GlazedLists.comparableComparator());
}
/**
* Constructs a SequenceList containing a sequence of values produced by
* the <code>sequencer</code> which cover the range of values contained
* within the <code>source</code>. The given <code>comparator</code>
* determines the order of the sequence values.
*
* @param source the raw values to build a sequence around
* @param sequencer the logic to produce sequence values relative to a value
* @param comparator determines the order of the sequence values
*/
public SequenceList(EventList<E> source, Sequencer<E> sequencer, Comparator<? super E> comparator) {
this(new SortedList<E>(source, comparator), sequencer, comparator);
}
private SequenceList(SortedList<E> source, Sequencer<E> sequencer, Comparator<? super E> comparator) {
super(source);
if (sequencer == null)
throw new IllegalArgumentException("sequencer may not be null");
if (comparator == null)
throw new IllegalArgumentException("comparator may not be null");
this.sequencer = sequencer;
this.comparator = comparator;
this.updateSequence();
source.addListEventListener(this);
}
/**
* @return <tt>false</tt>; SequenceList is readonly
*/
@Override
protected boolean isWritable() {
return false;
}
/** {@inheritDoc} */
@Override
public int size() {
return this.sequence.size();
}
/** {@inheritDoc} */
@Override
public E get(int index) {
return this.sequence.get(index);
}
/**
* A Sequencer defines the logic required to calculate the previous and
* next sequence values given any value. It is important to note that the
* arguments passed to {@link #previous} and {@link #next} will not always
* be sequence values themselves. For example if a Sequencer is contains
* logic to produce a sequence of numbers evenly divisible by 2, it must
* handle returning the next and previous even number relative to
* <strong>any</strong> integer. So the Sequencer logic must produce:
*
* <ul>
* <li><code>previous(5)</code> returns 4
* <li><code>previous(6)</code> returns 4
* <li><code>next(5)</code> returns 6
* <li><code>next(4)</code> returns 6
* </ul>
*/
public interface Sequencer<E> {
/**
* Given a sequencable <code>value</code>, produce the previous value
* in the sequence such that <code>value</code> is now included in the
* sequence.
*
* @param value a sequencable value
* @return the previous value in the sequence such that <code>value</code>
* would be included within the bounds of the sequence
*/
public E previous(E value);
/**
* Given a sequencable <code>value</code>, produce the next value
* in the sequence such that <code>value</code> is now included in the
* sequence.
*
* @param value a sequencable value
* @return the next value in the sequence such that <code>value</code>
* would be included within the bounds of the sequence
*/
public E next(E value);
}
/**
* Returns <tt>true</tt> if <code>value</code> is exactly a sequence value
* (i.e. could be stored at some index within this {@link SequenceList}.
*/
private boolean isSequenceValue(E value) {
final E sequencedValue = sequencer.previous(sequencer.next(value));
return comparator.compare(value, sequencedValue) == 0;
}
/**
* Returns the previous value in the sequence defined by this list or
* <code>value</code> itself if it is a sequence value.
*
* @param value the value relative to which the previous sequence value is returned
* @return the previous sequence value relative to the given <code>value</code>
*/
public E getPreviousSequenceValue(E value) {
// if value is already a sequence value, return it
if (isSequenceValue(value))
return value;
// ask the sequencer for the previous value
return sequencer.previous(value);
}
/**
* Returns the next value in the sequence defined by this list or
* <code>value</code> itself if it is a sequence value.
*
* @param value the value relative to which the next sequence value is returned
* @return the next sequence value relative to the given <code>value</code>
*/
public E getNextSequenceValue(E value) {
// if value is already a sequence value, return it
if (isSequenceValue(value))
return value;
// ask the sequencer for the next value
return sequencer.next(value);
}
/** {@inheritDoc} */
@Override
public void listChanged(ListEvent<E> listChanges) {
this.updateSequence();
}
/**
* A convenience method to update the sequence to minimally cover the
* underlying SortedList.
*/
private void updateSequence() {
updates.beginEvent();
// check for the special case when the underlying list has been completely cleared
if (source.isEmpty()) {
while (!sequence.isEmpty()) {
updates.elementDeleted(0, sequence.remove(0));
}
} else {
// seed this SequenceList with the initial two values
if (this.isEmpty()) {
final E value = source.get(0);
final E previousSequenceValue = getPreviousSequenceValue(value);
final E nextSequenceValue = getNextSequenceValue(value);
sequence.add(0, previousSequenceValue);
updates.elementInserted(0, previousSequenceValue);
sequence.add(1, nextSequenceValue);
updates.elementInserted(1, nextSequenceValue);
}
// add the necessary leading sequence values
final E firstSourceValue = source.get(0);
while (comparator.compare(firstSourceValue, get(0)) == -1) {
E element = sequencer.previous(get(0));
sequence.add(0, element);
updates.elementInserted(0, element);
}
// remove the unnecessary leading sequence values
while (comparator.compare(get(1), firstSourceValue) == -1) {
E oldValue = sequence.remove(0);
updates.elementDeleted(0, oldValue);
}
// add the necessary trailing sequence values
final E lastSourceValue = source.get(source.size()-1);
while (comparator.compare(lastSourceValue, get(size()-1)) == 1) {
E element = sequencer.next(get(size() - 1));
int index = size();
sequence.add(index, element);
updates.elementInserted(index, element);
}
// remove the unnecessary trailing sequence values
while (comparator.compare(get(size()-2), lastSourceValue) == 1) {
final int lastIndex = size()-1;
updates.elementDeleted(lastIndex, sequence.remove(lastIndex));
}
}
updates.commitEvent();
}
}
|