1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists;
import ca.odell.glazedlists.event.ListEvent;
import ca.odell.glazedlists.impl.GlazedListsImpl;
import ca.odell.glazedlists.impl.adt.barcode2.Element;
import ca.odell.glazedlists.impl.adt.barcode2.SimpleTree;
import ca.odell.glazedlists.impl.adt.barcode2.SimpleTreeIterator;
import java.util.*;
/**
* An {@link EventList} that shows its source {@link EventList} in sorted order.
*
* <p>The sorting strategy is specified with a {@link Comparator}. If no
* {@link Comparator} is specified, all of the elements of the source {@link EventList}
* must implement {@link Comparable}.
*
* <p>This {@link EventList} supports all write operations.
*
* <p><strong><font color="#FF0000">Warning:</font></strong> This class
* breaks the contract required by {@link List}. See {@link EventList}
* for an example.
*
* <p><strong><font color="#FF0000">Warning:</font></strong> This class is
* thread ready but not thread safe. See {@link EventList} for an example
* of thread safe code.
*
* <p><table border="1" width="100%" cellpadding="3" cellspacing="0">
* <tr class="TableHeadingColor"><td colspan=2><font size="+2"><b>EventList Overview</b></font></td></tr>
* <tr><td class="TableSubHeadingColor"><b>Writable:</b></td><td>yes</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Concurrency:</b></td><td>thread ready, not thread safe</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Performance:</b></td><td>reads: O(log N), writes O(log N), change comparator O(N log N)</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Memory:</b></td><td>72 bytes per element</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Unit Tests:</b></td><td>N/A</td></tr>
* <tr><td class="TableSubHeadingColor"><b>Issues:</b></td><td>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=39">39</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=40">40</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=58">58</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=60">60</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=62">62</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=66">66</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=161">161</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=170">170</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=206">206</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=239">239</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=255">255</a>
* <a href="https://glazedlists.dev.java.net/issues/show_bug.cgi?id=261">261</a>
* </td></tr>
* </table>
*
* @author <a href="mailto:jesse@swank.ca">Jesse Wilson</a>
*/
public final class SortedList<E> extends TransformedList<E,E> {
private static final byte ALL_COLORS = 1;
private static final Element EMPTY_ELEMENT = null;
/**
* Sorting mode where elements are always in sorted order, even if this
* requires that elements be moved from one index to another when their
* value is changed.
*/
public static final int STRICT_SORT_ORDER = 0;
/**
* Sorting mode where elements aren't moved when their value is changed,
* even if this means they are no longer in perfect sorted order. This mode
* is useful in editable lists and tables because it is annoying
* for the current element to move if its value changes.
*/
public static final int AVOID_MOVING_ELEMENTS = 1;
/** a map from the unsorted index to the sorted index */
private SimpleTree<Element> unsorted = null;
/** a map from the sorted index to the unsorted index */
private SimpleTree<Element> sorted = null;
/** the comparator that this list uses for sorting */
private Comparator<? super E> comparator = null;
/** one of {@link #STRICT_SORT_ORDER} or {@link #AVOID_MOVING_ELEMENTS}. */
private int mode = STRICT_SORT_ORDER;
/**
* Creates a {@link SortedList} that sorts the specified {@link EventList}.
* All elements in the specified {@link EventList} must implement {@link Comparable}.
*
* @param source the {@link EventList} to be sorted
*/
public static <E extends Comparable<? super E>> SortedList<E> create(EventList<E> source) {
return new SortedList<E>(source);
}
/**
* Creates a {@link SortedList} that sorts the specified {@link EventList}.
* Because this constructor takes no {@link Comparator} argument, all
* elements in the specified {@link EventList} must implement {@link Comparable}
* or a {@link ClassCastException} will be thrown.
* <p>Usage of factory method {@link #create(EventList)} is preferable.
*
* @param source the {@link EventList} to be sorted
*/
public SortedList(EventList<E> source) {
this(source, (Comparator<E>)GlazedLists.comparableComparator());
}
/**
* Creates a {@link SortedList} that sorts the specified {@link EventList}
* using the specified {@link Comparator} to determine sort order. If the
* specified {@link Comparator} is <code>null</code>, then this {@link List}
* will be unsorted.
*/
public SortedList(EventList<E> source, Comparator<? super E> comparator) {
super(source);
setComparator(comparator);
source.addListEventListener(this);
}
/**
* Modify the behaviour of this {@link SortedList} to one of the predefined modes.
*
* @param mode either {@link #STRICT_SORT_ORDER} or {@link #AVOID_MOVING_ELEMENTS}.
*/
public void setMode(int mode) {
if(mode != STRICT_SORT_ORDER && mode != AVOID_MOVING_ELEMENTS) throw new IllegalArgumentException("Mode must be either SortedList.STRICT_SORT_ORDER or SortedList.AVOID_MOVING_ELEMENTS");
if(mode == this.mode) return;
// apply the new mode
this.mode = mode;
// we need to re-sort the table on the off-chance that an element
// was out of order before
if(this.mode == STRICT_SORT_ORDER) {
setComparator(getComparator());
}
}
/**
* Get the behaviour mode for this {@link SortedList}.
*
* @return one of {@link #STRICT_SORT_ORDER} (default) or
* {@link #AVOID_MOVING_ELEMENTS}.
*/
public int getMode() {
return this.mode;
}
/** {@inheritDoc} */
@Override
public void listChanged(ListEvent<E> listChanges) {
// handle reordering events
if(listChanges.isReordering()) {
int[] sourceReorder = listChanges.getReorderMap();
// remember what the mapping was before
int[] previousIndexToSortedIndex = new int[sorted.size()];
int index = 0;
for(SimpleTreeIterator<Element> i = new SimpleTreeIterator<Element>(sorted); i.hasNext(); index++) {
i.next();
Element<Element> unsortedNode = i.value();
int unsortedIndex = unsorted.indexOfNode(unsortedNode, ALL_COLORS);
previousIndexToSortedIndex[unsortedIndex] = index;
}
// adjust the from index for the source reorder
int[] newIndexToSortedIndex = new int[sorted.size()];
for(int i = 0; i < previousIndexToSortedIndex.length; i++) {
newIndexToSortedIndex[i] = previousIndexToSortedIndex[sourceReorder[i]];
}
// reorder the unsorted nodes to get the new sorted order
Element<Element>[] unsortedNodes = new Element[unsorted.size()];
index = 0;
for(SimpleTreeIterator<Element> i = new SimpleTreeIterator<Element>(unsorted); i.hasNext(); index++) {
i.next();
Element<Element> unsortedNode = i.node();
unsortedNodes[index] = unsortedNode;
}
Arrays.sort(unsortedNodes, sorted.getComparator());
// create a new reorder map to send the changes forward
int[] reorderMap = new int[sorted.size()];
boolean indexChanged = false;
index = 0;
for(SimpleTreeIterator<Element> i = new SimpleTreeIterator<Element>(sorted); i.hasNext(); index++) {
i.next();
Element<Element> sortedNode = i.node();
Element<Element> unsortedNode = unsortedNodes[index];
sortedNode.set(unsortedNode);
unsortedNode.set(sortedNode);
int unsortedIndex = unsorted.indexOfNode(unsortedNode, ALL_COLORS);
reorderMap[index] = newIndexToSortedIndex[unsortedIndex];
indexChanged = indexChanged || (index != reorderMap[index]);
}
// notify the world of the reordering
if(indexChanged) {
updates.beginEvent();
updates.reorder(reorderMap);
updates.commitEvent();
}
return;
}
// This is implemented in three phases. These phases are:
// 1. Update the unsorted tree for all event types. Update the sorted tree
// for delete events by deleting nodes. Fire delete events. Queue unsorted
// nodes for inserts and deletes in a list.
// 2. Fire update events by going through the updated nodes and testing
// whether they're still in sort order or if they need to be moved
// 3. Process queue of unsorted nodes for inserts. Fire insert events.
// This cycle is rather complex but necessarily so. The reason is that for
// the two-tree SortedList to function properly, there is a very strict order
// for how trees can be modified. The unsorted tree must be brought completely
// up-to-date before any access is made to the sorted tree. This ensures that
// the unsorted nodes can discover their indices properly. The sorted tree must
// have all deleted notes removed and updated nodes marked as unsorted
// before any nodes are inserted. This is because a deleted node may
// have a changed value that violates the sorted order in the tree. An
// insert in this case may compare against a violating node and result
// in inconsistency, even if the other node is eventually deleted.
// Therefore the order of operations above is essentially update
// the unsorted tree, delete from the sorted tree and finally insert into the
// sorted tree.
// all of these changes to this list happen "atomically"
updates.beginEvent();
// first update the offset tree for all changes, and keep the changed nodes in a list
LinkedList<Element> insertNodes = new LinkedList<Element>();
List<Element<Element>> updateNodes = new ArrayList<Element<Element>>();
List<E> previousValues = new ArrayList<E>();
// Update the indexed tree so it matches the source.
// Save the nodes to be inserted and updated as well
while(listChanges.next()) {
// get the current change info
int unsortedIndex = listChanges.getIndex();
int changeType = listChanges.getType();
// on insert, insert the index node
if(changeType == ListEvent.INSERT) {
Element<Element> unsortedNode = unsorted.add(unsortedIndex, EMPTY_ELEMENT, 1);
insertNodes.addLast(unsortedNode);
// on update, mark the updated node as unsorted and save it so it can be moved
} else if(changeType == ListEvent.UPDATE) {
Element<Element> unsortedNode = unsorted.get(unsortedIndex);
Element sortedNode = unsortedNode.get();
sortedNode.setSorted(Element.PENDING);
updateNodes.add(sortedNode);
previousValues.add(listChanges.getOldValue());
// on delete, delete the index and sorted node
} else if(changeType == ListEvent.DELETE) {
Element<Element> unsortedNode = unsorted.get(unsortedIndex);
E deleted = listChanges.getOldValue();
unsorted.remove(unsortedNode);
int deleteSortedIndex = deleteByUnsortedNode(unsortedNode);
updates.elementDeleted(deleteSortedIndex, deleted);
}
}
// decide which updated elements need to be shifted. We walk through the
// tree, marking updated elements as sorted or unsorted depending on their
// value relative to their neighbours
for(int i = 0, size = updateNodes.size(); i < size; i++) {
Element<Element> sortedNode = updateNodes.get(i);
// we may have already handled this via a neighbour
if(sortedNode.getSorted() != Element.PENDING) continue;
// find the bounds (by value) on this element. this is the last element
// preceeding current that's sorted and the first element after current
// that's sorted. If there's no such element (ie. the end of the list),
// then the bound element is null
Element lowerBound = null;
Element upperBound = null;
Element firstUnsortedNode = sortedNode;
for(Element leftNeighbour = sortedNode.previous(); leftNeighbour != null; leftNeighbour = leftNeighbour.previous()) {
if(leftNeighbour.getSorted() != Element.SORTED) {
firstUnsortedNode = leftNeighbour;
continue;
}
lowerBound = leftNeighbour;
break;
}
for(Element rightNeighbour = sortedNode.next(); rightNeighbour != null; rightNeighbour = rightNeighbour.next()) {
if(rightNeighbour.getSorted() != Element.SORTED) continue;
upperBound = rightNeighbour;
break;
}
// walk from the leader to the follower, marking elements as in sorted
// order or not. We simply compare them to our 2 potentially distant neighbours
// on either side - the lower and upper bounds
Comparator nodeComparator = sorted.getComparator();
for(Element current = firstUnsortedNode; current != upperBound; current = current.next()) {
// ensure we're less than the upper bound
if(upperBound != null && nodeComparator.compare(current.get(), upperBound.get()) > 0) {
current.setSorted(Element.UNSORTED);
continue;
}
// and greater than the lower bound
if(lowerBound != null && nodeComparator.compare(current.get(), lowerBound.get()) < 0) {
current.setSorted(Element.UNSORTED);
continue;
}
// so the node is sorted, and it's our new lower bound
current.setSorted(Element.SORTED);
lowerBound = current;
}
}
// fire update events
for(int i = 0, size = updateNodes.size(); i < size; i++) {
E previous = previousValues.get(i);
Element<Element> sortedNode = updateNodes.get(i);
assert(sortedNode.getSorted() != Element.PENDING);
int originalIndex = sorted.indexOfNode(sortedNode, ALL_COLORS);
// the element is still in sorted order, forward the update event
if(sortedNode.getSorted() == Element.SORTED) {
updates.elementUpdated(originalIndex, previous);
// sort order is not enforced so we lose perfect sorting order
// but we don't need to move elements around
} else if(mode == AVOID_MOVING_ELEMENTS) {
updates.elementUpdated(originalIndex, previous);
// sort order is enforced so move the element to its new location
} else {
sorted.remove(sortedNode);
updates.elementDeleted(originalIndex, previous);
int insertedIndex = insertByUnsortedNode(sortedNode.get());
updates.addInsert(insertedIndex);
}
}
// fire insert events
while(!insertNodes.isEmpty()) {
Element insertNode = insertNodes.removeFirst();
int insertedIndex = insertByUnsortedNode(insertNode);
updates.addInsert(insertedIndex);
}
// commit the changes and notify listeners
updates.commitEvent();
}
/**
* Inserts the specified unsorted node as the value in the sorted tree
* and returns the sorted order.
*
* @return the sortIndex of the inserted object.
*/
private int insertByUnsortedNode(Element unsortedNode) {
// add the object to the sorted set
Element<Element> sortedNode = sorted.addInSortedOrder(ALL_COLORS, unsortedNode, 1);
// assign the unsorted node the value of the sorted node
unsortedNode.set(sortedNode);
// return the sorted index
return sorted.indexOfNode(sortedNode, ALL_COLORS);
}
/**
* Deletes the node in the sorted tree based on the value of the specified
* unsorted tree node.
*
* @return the sortIndex of the deleted object.
*/
private int deleteByUnsortedNode(Element unsortedNode) {
// get the sorted node
Element sortedNode = (Element)unsortedNode.get();
// look up the sorted index before removing the nodes
int sortedIndex = sorted.indexOfNode(sortedNode, ALL_COLORS);
// delete the sorted node from its tree
sorted.remove(sortedIndex, 1);
// return the sorted index
return sortedIndex;
}
/** {@inheritDoc} */
@Override
protected int getSourceIndex(int mutationIndex) {
Element sortedNode = sorted.get(mutationIndex);
Element unsortedNode = (Element)sortedNode.get();
return unsorted.indexOfNode(unsortedNode, ALL_COLORS);
}
/** {@inheritDoc} */
@Override
protected boolean isWritable() {
return true;
}
/**
* Gets the {@link Comparator} that is being used to sort this list.
*
* @return the {@link Comparator} in use, or <tt>null</tt> if this list is
* currently unsorted. If this is an {@link EventList} of {@link Comparable}
* elements in natural order, then a ComparableComparator} will
* be returned.
*/
public Comparator<? super E> getComparator() {
return comparator;
}
/**
* Set the {@link Comparator} in use in this {@link EventList}. This will
* sort the source {@link EventList} into a new order.
*
* <p>Performance Note: sorting will take <code>O(N * Log N)</code> time.
*
* <p><strong><font color="#FF0000">Warning:</font></strong> This method is
* thread ready but not thread safe. See {@link EventList} for an example
* of thread safe code.
*
* @param comparator the {@link Comparator} to specify how to sort the list. If
* the source {@link EventList} elements implement {@link Comparable},
* you may use a {@link GlazedLists#comparableComparator()} to sort them
* in their natural order. You may also specify <code>null</code> to put
* this {@link SortedList} in unsorted order.
*/
public void setComparator(Comparator<? super E> comparator) {
// save this comparator
this.comparator = comparator;
// keep the old trees to construct the reordering
SimpleTree previousSorted = sorted;
// create the sorted list with a simple comparator
final Comparator treeComparator;
if(comparator != null) treeComparator = new ElementComparator(comparator);
else treeComparator = new ElementRawOrderComparator();
sorted = new SimpleTree<Element>(treeComparator);
// create a list which knows the offsets of the indexes to initialize this list
if(previousSorted == null && unsorted == null) {
unsorted = new SimpleTree<Element>();
// add all elements in the source list, in order
for(int i = 0, n = source.size(); i < n; i++) {
Element unsortedNode = unsorted.add(i, EMPTY_ELEMENT, 1);
insertByUnsortedNode(unsortedNode);
}
// this is the first sort so we're done
return;
}
// if the lists are empty, we're done
if(source.size() == 0) return;
// rebuild the sorted tree to reflect the new Comparator
for(SimpleTreeIterator<Element> i = new SimpleTreeIterator<Element>(unsorted); i.hasNext(); ) {
i.next();
Element unsortedNode = i.node();
insertByUnsortedNode(unsortedNode);
}
// construct the reorder map
int[] reorderMap = new int[size()];
int oldSortedIndex = 0;
for(SimpleTreeIterator<Element> i = new SimpleTreeIterator<Element>(previousSorted); i.hasNext(); oldSortedIndex++) {
i.next();
Element oldSortedNode = i.node();
Element unsortedNode = (Element)oldSortedNode.get();
Element newSortedNode = (Element)unsortedNode.get();
int newSortedIndex = sorted.indexOfNode(newSortedNode, ALL_COLORS);
reorderMap[newSortedIndex] = oldSortedIndex;
}
// notification about the big change
updates.beginEvent();
updates.reorder(reorderMap);
updates.commitEvent();
}
/** {@inheritDoc} */
@Override
public int indexOf(Object object) {
if(mode != STRICT_SORT_ORDER || comparator == null) return super.indexOf(object);
// use the fact that we have sorted data to quickly locate a position
// at which we can begin a linear search for an object that .equals(object)
int index = ((SimpleTree)sorted).indexOfValue(object, true, false, ALL_COLORS);
// if we couldn't use the comparator to find the index, return -1
if (index == -1) return -1;
// otherwise, we must now begin a linear search for the index of an element
// that .equals() the given object
for (; index < size(); index++) {
E objectAtIndex = get(index);
// if the objectAtIndex no longer compares equally with the given object, stop the linear search
if (comparator.compare((E)object, objectAtIndex) != 0) return -1;
// if the objectAtIndex and object are equal, return the index
if (GlazedListsImpl.equal(object, objectAtIndex))
return index;
}
// if we fall out of the loop we could not locate the object
return -1;
}
/** {@inheritDoc} */
@Override
public int lastIndexOf(Object object) {
if(mode != STRICT_SORT_ORDER || comparator == null) return super.lastIndexOf(object);
// use the fact that we have sorted data to quickly locate a position
// at which we can begin a linear search for an object that .equals(object)
int index = ((SimpleTree)sorted).indexOfValue(object, false, false, ALL_COLORS);
// if we couldn't use the comparator to find the index, return -1
if (index == -1) return -1;
// otherwise, we must now begin a linear search for the index of an element
// that .equals() the given object
for(; index > -1; index--) {
E objectAtIndex = get(index);
// if the objectAtIndex no longer compares equally with the given object, stop the linear search
if(comparator.compare((E)object, objectAtIndex) != 0) return -1;
// if the objectAtIndex and object are equal, return the index
if(GlazedListsImpl.equal(object, objectAtIndex))
return index;
}
// if we fall out of the loop we could not locate the object
return -1;
}
/**
* Returns the first index of the <code>object</code>'s sort location or
* the first index at which the <code>object</code> could be positioned if
* inserted.
*
* <p>Unlike {@link #indexOf} this method does not guarantee the given
* <code>object</code> {@link Object#equals(Object) equals} the element at
* the returned index. Instead, they are indistinguishable according to the
* sorting {@link Comparator}.
*
* @return a value in <tt>[0, size()]</tt> inclusive
*/
public int sortIndex(Object object) {
if (comparator == null)
throw new IllegalStateException("No Comparator exists to perform this operation");
return ((SimpleTree)sorted).indexOfValue(object, true, true, ALL_COLORS);
}
/**
* Returns the last index of the <code>object</code>'s sort location or
* the last index at which the <code>object</code> could be positioned if
* inserted.
*
* <p>Unlike {@link #lastIndexOf} this method does not guarantee the given
* <code>object</code> {@link Object#equals(Object) equals} the element at
* the returned index. Instead, they are indistinguishable according to the
* sorting {@link Comparator}.
*
* @return a value in <tt>[0, size()]</tt> inclusive
*/
public int lastSortIndex(Object object) {
if (comparator == null)
throw new IllegalStateException("No Comparator exists to perform this operation");
return ((SimpleTree)sorted).indexOfValue(object, false, true, ALL_COLORS);
}
/**
* Returns the index in this list of the first occurrence of the specified
* element, or the index where that element would be in the list if it were
* inserted.
*
* @return the index in this list of the first occurrence of the specified
* element, or the index where that element would be in the list if it
* were inserted. This will return a value in <tt>[0, size()]</tt>,
* inclusive.
*
* @deprecated Deprecated as of 12/11/2005. Replaced with {@link #sortIndex(Object)}
* which has cleaner semantics.
*/
public int indexOfSimulated(Object object) {
return comparator != null ? ((SimpleTree)sorted).indexOfValue(object, true, true, ALL_COLORS) : size();
}
/** {@inheritDoc} */
@Override
public boolean contains(Object object) {
return indexOf(object) != -1;
}
/**
* A comparator that takes an indexed node, and compares the value
* of an object in a list that has the index of that node.
*
* <p>If one of the objects passed to {@link #compare} is not an
* {@link Element}, it will compare the object directly to the object
* in the source {@link EventList} referenced by the {@link Element}.
* This functionality is necessary to allow use of the underlying
* {@link Comparator} within {@link SimpleTree} to support {@link List#indexOf},
* {@link List#lastIndexOf}, and {@link List#contains}.
*/
private class ElementComparator implements Comparator {
/** the actual comparator used on the values found */
private Comparator comparator;
/**
* Creates an {@link ElementComparator} that compares the
* objects in the source list based on the indexes of the tree
* nodes being compared.
*/
public ElementComparator(Comparator comparator) {
this.comparator = comparator;
}
/**
* Compares object alpha to object beta by using the source comparator.
*/
public int compare(Object alpha, Object beta) {
Object alphaObject = alpha;
Object betaObject = beta;
int alphaIndex = -1;
int betaIndex = -1;
if(alpha instanceof Element) {
Element alphaTreeNode = (Element)alpha;
alphaIndex = unsorted.indexOfNode(alphaTreeNode, ALL_COLORS);
alphaObject = source.get(alphaIndex);
}
if(beta instanceof Element) {
Element betaTreeNode = (Element)beta;
betaIndex = unsorted.indexOfNode(betaTreeNode, ALL_COLORS);
betaObject = source.get(betaIndex);
}
int result = comparator.compare(alphaObject, betaObject);
if(result != 0) return result;
if(alphaIndex != -1 && betaIndex != -1) return alphaIndex - betaIndex;
return 0;
}
}
/**
* A comparator that takes an indexed node, and compares the index of that node.
*/
private class ElementRawOrderComparator implements Comparator {
/**
* Compares the alpha object to the beta object by their indices.
*/
public int compare(Object alpha, Object beta) {
Element alphaTreeNode = (Element)alpha;
Element betaTreeNode = (Element)beta;
int alphaIndex = unsorted.indexOfNode(alphaTreeNode, ALL_COLORS);
int betaIndex = unsorted.indexOfNode(betaTreeNode, ALL_COLORS);
return alphaIndex - betaIndex;
}
}
/** {@inheritDoc} */
@Override
public Iterator<E> iterator() {
return new SortedListIterator();
}
/**
* The fast iterator for SortedList
*/
private class SortedListIterator implements Iterator<E> {
/** the SimpleTreeIterator to use to move across the tree */
private SimpleTreeIterator<Element> treeIterator = new SimpleTreeIterator<Element>(sorted);
/**
* Returns true iff there are more value to iterate on by caling next()
*/
public boolean hasNext() {
return treeIterator.hasNext();
}
/**
* Returns the next value in the iteration.
*/
public E next() {
treeIterator.next();
Element unsortedNode = treeIterator.value();
return source.get(unsorted.indexOfNode(unsortedNode, ALL_COLORS));
}
/**
* Removes the last value returned by this iterator.
*/
public void remove() {
int indexToRemove = treeIterator.index();
SortedList.this.source.remove(getSourceIndex(indexToRemove));
treeIterator = new SimpleTreeIterator(sorted, indexToRemove, ALL_COLORS);
}
}
}
|