1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists.impl.adt;
/**
* A BarcodeNode models a node in an Barcode. This class
* does the bulk of the heavy lifting for Barcode.
*
* @author <a href="mailto:kevin@swank.ca">Kevin Maltby</a>
*
*/
final class BarcodeNode {
/** the parent node */
BarcodeNode parent;
/** the tree that this node is a member of */
private Barcode host;
/** the left and right child nodes */
BarcodeNode left = null;
BarcodeNode right = null;
/** the size of the black portion of the left and right subtrees */
private int blackLeftSize = 0;
private int blackRightSize = 0;
/** the total size of the left and right subtrees */
private int treeLeftSize = 0;
private int treeRightSize = 0;
/** the amount of empty space that precedes this node */
int whiteSpace = 0;
/** the number of values represented by this node */
int rootSize = 1;
/** the height of this subtree */
private int height = 1;
/**
* Creates a new BarcodeNode with the specified parent node and host tree.
*/
private BarcodeNode(Barcode host, BarcodeNode parent) {
this.host = host;
this.parent = parent;
}
/**
* This is a convenience constructor for creating a new BarcodeNode
* with a given number of values and amount of preceding empty space.
*/
BarcodeNode(Barcode host, BarcodeNode parent, int values, int whiteSpace) {
this(host, parent);
this.whiteSpace = whiteSpace;
this.rootSize = values;
}
/**
* Returns the size of the subtree rooted at this node
*/
int size() {
return treeLeftSize + whiteSpace + rootSize + treeRightSize;
}
/**
* Returns the size of the black portion of the subtree rooted at this
*/
int blackSize() {
return blackLeftSize + rootSize + blackRightSize;
}
/**
* Returns the size of the white portion of the subtree rooted at this
*/
int whiteSize() {
return (treeLeftSize - blackLeftSize) + whiteSpace + (treeRightSize - blackRightSize);
}
/**
* Inserts multiple values into the host tree
*/
void insertBlack(int index, int length) {
int localIndex = index - treeLeftSize;
// Recurse to the Left adjusting sizes as you go
if(localIndex < 0) {
blackLeftSize += length;
treeLeftSize += length;
left.insertBlack(index, length);
// Recurse to the Right adjusting sizes as you go
} else if(localIndex > whiteSpace + rootSize) {
blackRightSize += length;
treeRightSize += length;
right.insertBlack(localIndex - whiteSpace - rootSize, length);
// The new values should be compressed into this node
} else if(localIndex == whiteSpace + rootSize) {
rootSize += length;
// Insert in the middle of the empty space
} else if(localIndex < whiteSpace) {
whiteSpace -= localIndex;
blackLeftSize += length;
treeLeftSize += localIndex + length;
if(left == null) {
left = new BarcodeNode(host, this, length, localIndex);
ensureAVL();
} else {
left.insertBlackAtEnd(length, localIndex);
}
// Insert within this node
} else {
rootSize += length;
}
}
/**
* Inserts a value at the end of the tree rooted at this.
*/
void insertBlackAtEnd(int values, int leadingWhite) {
// Recurse to the right
if(right != null) {
blackRightSize += values;
treeRightSize += values + leadingWhite;
right.insertBlackAtEnd(values, leadingWhite);
// Insert on the right
} else {
if(leadingWhite == 0) {
rootSize += values;
} else {
blackRightSize += values;
treeRightSize += values + leadingWhite;
right = new BarcodeNode(host, this, values, leadingWhite);
ensureAVL();
}
}
}
/**
* Inserts multiple null values as empty space in the host tree.
*/
void insertWhite(int index, int length) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) {
treeLeftSize += length;
left.insertWhite(index, length);
// Recurse to the Right
} else if(localIndex > whiteSpace + rootSize - 1) {
treeRightSize += length;
right.insertWhite(localIndex - whiteSpace - rootSize, length);
// Insert in the whitespace for this node
} else if(localIndex <= whiteSpace) {
whiteSpace += length;
// Insert within this node
} else {
localIndex -= whiteSpace;
int movingRoot = rootSize - localIndex;
rootSize = localIndex;
blackRightSize += movingRoot;
treeRightSize += movingRoot + length;
if(right == null) {
right = new BarcodeNode(host, this, movingRoot, length);
ensureAVL();
} else {
BarcodeNode node = new BarcodeNode(host, null, movingRoot, length);
right.moveToSmallest(node);
}
}
}
/**
* Moves a given node to be the smallest node in the subtree rooted at
* this.
*/
private void moveToSmallest(BarcodeNode movingNode) {
// Recurse to the left
if(left != null) {
blackLeftSize += movingNode.rootSize;
treeLeftSize += movingNode.whiteSpace + movingNode.rootSize;
left.moveToSmallest(movingNode);
// Add the node as a left child of this
} else {
// This node will be compressed now
if(whiteSpace == 0) {
rootSize += movingNode.rootSize;
whiteSpace += movingNode.whiteSpace;
movingNode.clear();
// Add the moving node on the left
} else {
blackLeftSize += movingNode.rootSize;
treeLeftSize += movingNode.whiteSpace + movingNode.rootSize;
movingNode.parent = this;
left = movingNode;
ensureAVL();
}
}
}
/**
* Gets the white-centric index from the given list index or returns -1
* if that list index has a value of <code>Barcode.BLACK</code>.
*/
int getWhiteIndex(int index) {
return getWhiteIndex(index, 0);
}
private int getWhiteIndex(int index, int accumulation) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) return left.getWhiteIndex(index, accumulation);
// Recurse to the Right
else if(localIndex > whiteSpace + rootSize - 1) {
accumulation += (treeLeftSize - blackLeftSize) + whiteSpace;
return right.getWhiteIndex(localIndex - whiteSpace - rootSize, accumulation);
// Get the white index from this node
} else if(localIndex < whiteSpace) return accumulation + (treeLeftSize - blackLeftSize) + localIndex;
// Get the white index from the black portion of this node
else return -1;
}
/**
* Gets the black-centric index from the given list index or returns -1
* if that list index has a value of <code>Barcode.WHITE</code>.
*/
int getBlackIndex(int index) {
return getBlackIndex(index, 0);
}
private int getBlackIndex(int index, int accumulation) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) return left.getBlackIndex(index, accumulation);
// Recurse to the Right
else if(localIndex > whiteSpace + rootSize - 1) {
return right.getBlackIndex(localIndex - whiteSpace - rootSize, accumulation + blackLeftSize + rootSize);
// Get the black index from the white portion of this node
} else if(localIndex < whiteSpace) return -1;
// Get the black index from this node
else return accumulation + blackLeftSize + localIndex - whiteSpace;
}
/**
* Gets the white-centric index from the given list index.
*
* @param lead true for an index with a value of Barcode.BLACK to return
* the white-centric index of the previous white value in the Barcode.
* False for an index with a value of Barcode.BLACK to return
* the white-centric index of the next white value in the Barcode.
*/
public int getWhiteIndex(int index, boolean lead) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) return left.getWhiteIndex(index, lead);
// Recurse to the Right
else if(localIndex > whiteSpace + rootSize - 1) {
return right.getWhiteIndex(localIndex - whiteSpace - rootSize, lead) + treeLeftSize - blackLeftSize + whiteSpace;
// Get the white index from within this node
} else if(localIndex < whiteSpace) {
return treeLeftSize - blackLeftSize + localIndex;
// Get the white index based on lead
} else {
if(lead) return treeLeftSize - blackLeftSize + whiteSpace - 1;
return treeLeftSize - blackLeftSize + whiteSpace;
}
}
/**
* Gets the black-centric index from the given list index.
*
* @param lead true for an index with a value of Barcode.WHITE to return
* the black-centric index of the previous black value in the Barcode.
* False for an index with a value of Barcode.WHITE to return
* the black-centric index of the next black value in the Barcode.
*/
public int getBlackIndex(int index, boolean lead) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) return left.getBlackIndex(index, lead);
// Recurse to the Right
else if(localIndex > whiteSpace + rootSize - 1) {
return right.getBlackIndex(localIndex - whiteSpace - rootSize, lead) + blackLeftSize + rootSize;
// Get the black index based on lead
} else if(localIndex < whiteSpace) {
if(lead) return blackLeftSize - 1;
return blackLeftSize;
// Get the black index at this node
} else return blackLeftSize + localIndex - whiteSpace;
}
/**
* Gets the list index from a given white-centric index.
*/
public int getIndexByWhiteIndex(int whiteIndex) {
int localIndex = whiteIndex - (treeLeftSize - blackLeftSize);
// Recurse to the Left
if(localIndex < 0) return left.getIndexByWhiteIndex(whiteIndex);
// Recurse to the Right
else if(localIndex >= whiteSpace) {
return right.getIndexByWhiteIndex(localIndex - whiteSpace)
+ treeLeftSize + whiteSpace + rootSize;
// Get the list index from this node
} else return treeLeftSize + localIndex;
}
/**
* Gets the list index from a given black-centric index.
*/
public int getIndexByBlackIndex(int blackIndex) {
int localIndex = blackIndex - blackLeftSize;
// Recurse to the Left
if(localIndex < 0) return left.getIndexByBlackIndex(blackIndex);
// Recurse to the Right
else if(localIndex >= rootSize) {
return right.getIndexByBlackIndex(localIndex - rootSize)
+ treeLeftSize + whiteSpace + rootSize;
// Get the list index from this node
} else return treeLeftSize + whiteSpace + localIndex;
}
/**
* Gets the sequence relative index given a white-centric index.
*/
public int getWhiteSequenceIndex(int whiteIndex) {
int localIndex = whiteIndex - (treeLeftSize - blackLeftSize);
// Recurse to the Left
if(localIndex < 0) return left.getWhiteSequenceIndex(whiteIndex);
// Recurse to the Right
else if(localIndex >= whiteSpace) {
return right.getWhiteSequenceIndex(localIndex - whiteSpace);
// once the recursion is done you have the relative index
} else return localIndex;
}
/**
* This method exists for CollectionList which needs a way to call
* getBlackIndex(index, true) with a white-centric index.
*/
public int getBlackBeforeWhite(int whiteIndex) {
int localIndex = whiteIndex - (treeLeftSize - blackLeftSize);
// Recurse to the Left
if(localIndex < 0) return left.getBlackBeforeWhite(whiteIndex);
// Recurse to the Right
else if(localIndex >= whiteSpace) {
return right.getBlackBeforeWhite(localIndex - whiteSpace) + blackLeftSize + rootSize;
// Get the black index before this node
} else {
return blackLeftSize - 1;
}
}
/**
* Finds a sequence of the given colour that is at least size elements
* in length.
*
* @param size the minimum size of a matching sequence.
*
* @return The natural index of the first element in the sequence or -1 if
* no sequences of that length exist.
*/
public int findSequenceOfMinimumSize(int size, Object colour) {
return findFirstFitSequence(size, colour, 0);
}
/**
* The depth-first, FIRST FIT implementation.
*/
private int findFirstFitSequence(int size, Object colour, int accumulation) {
int result = -1;
// Recurse to the Left
if(left != null) {
result = left.findFirstFitSequence(size, colour, accumulation);
}
// Inspect this node
if(result == -1) {
// Looking for a WHITE sequence
if(colour == Barcode.WHITE && size <= whiteSpace) {
return accumulation + treeLeftSize;
// Looking for a BLACK sequence
} else if(colour == Barcode.BLACK && size <= rootSize) {
return accumulation + treeLeftSize + whiteSpace;
}
}
// Recurse to the Right
if(result == -1 && right != null) {
result = right.findFirstFitSequence(size, colour, accumulation + treeLeftSize + whiteSpace + rootSize);
}
return result;
}
/**
* Sets the values from index to index + length.
*/
void set(int index, Object value, int length) {
if(length == 1) setBaseCase(index, index, value);
else set(index, index, value, length);
}
private void set(int absoluteIndex, int localIndex, Object value, int length) {
int localizedIndex = localIndex - treeLeftSize;
// Recurse to the Left
if(localizedIndex < 0) {
left.set(absoluteIndex, localIndex, value, length);
// Recurse to the Right
} else if(localizedIndex > whiteSpace + rootSize - 1) {
right.set(absoluteIndex, localizedIndex - whiteSpace - rootSize, value, length);
// Set values on this node to white
} else if(value == Barcode.WHITE) {
setWhite(absoluteIndex, localizedIndex, length);
// Set values on this node to black
} else {
setBlack(absoluteIndex, localizedIndex, length);
}
}
void setWhite(int absoluteIndex, int localIndex, int length) {
int endIndex = localIndex + length - 1;
// Set only whitespace so no change at all
if(endIndex < whiteSpace) {
// Do Nothing
// Set only within the black
} else if(localIndex > whiteSpace - 1) {
int rootChange = Math.min(length, whiteSpace + rootSize - localIndex);
// This node will be removed
if(rootSize == rootChange) {
whiteSpace += rootChange;
rootSize = 0;
correctSizes(-rootChange, 0);
unlink(absoluteIndex - localIndex);
// Update root and add white space
} else {
rootSize -= rootChange;
if(localIndex < whiteSpace + rootSize) {
correctSizes(-rootChange, 0);
insertWhite(localIndex + treeLeftSize, rootChange);
} else {
correctSizes(-rootChange, -rootChange);
host.addWhite(absoluteIndex, rootChange);
}
}
// Set is larger than just this node
if(rootChange != length) {
host.remove(absoluteIndex + rootChange, length - rootChange);
host.addWhite(absoluteIndex + rootChange, length - rootChange);
}
// Set both black and white
} else if(localIndex < whiteSpace + 1 && endIndex < whiteSpace + rootSize) {
int rootChange = Math.min(length, whiteSpace + rootSize - localIndex) + (localIndex - whiteSpace);
rootSize -= rootChange;
whiteSpace += rootChange;
correctSizes(-rootChange, 0);
// Set this entire node to white
} else {
whiteSpace += rootSize;
int localLength = whiteSpace - localIndex;
unlink(absoluteIndex - localIndex);
if(localLength != length) {
host.remove(absoluteIndex + localLength, length - localLength);
host.addWhite(absoluteIndex + localLength, length - localLength);
}
}
}
void setBlack(int absoluteIndex, int localIndex, int length) {
int endIndex = localIndex + length - 1;
int localLength = Math.min(length, whiteSpace + rootSize - localIndex);
// Set only black so no change at this node
if(localIndex > whiteSpace - 1) {
// Do Nothing
// Set some or all white to black
} else if(endIndex > whiteSpace - 1) {
int whiteChange = whiteSpace - localIndex;
rootSize += whiteChange;
whiteSpace -= whiteChange;
correctSizes(whiteChange, 0);
compressNode(absoluteIndex - localIndex);
// Set within the whitespace
} else {
whiteSpace -= length;
correctSizes(0, -length);
host.addBlack(absoluteIndex, length);
compressNode(absoluteIndex - localIndex);
}
// Remove/Add if the length spills over to another node
if(localLength != length) {
host.remove(absoluteIndex + localLength, length - localLength);
host.addBlack(absoluteIndex + localLength, length - localLength);
}
}
/**
* Sets the value of the element at a given index.
*/
private void setBaseCase(int absoluteIndex, int index, Object value) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) {
left.setBaseCase(absoluteIndex, index, value);
// Recurse to the Right
} else if(localIndex > whiteSpace + rootSize) {
right.setBaseCase(absoluteIndex, localIndex - whiteSpace - rootSize, value);
// Edge case where leading white moves to this
} else if(localIndex == whiteSpace + rootSize) {
// Add the new value to this root
if(value != Barcode.WHITE) {
rootSize++;
treeRightSize--;
correctSizes(1, 0);
right.setFirstNullToTrue(absoluteIndex, localIndex - whiteSpace - rootSize + 1);
}
// Set a value in the middle of the white space
} else if(localIndex < whiteSpace) {
if(value == Barcode.WHITE) return;
whiteSpace--;
correctSizes(1, 0);
insertBlack(index, 1);
compressNode(absoluteIndex);
// Set a value at the leading edge of this node
} else if(localIndex == whiteSpace) {
if(value == Barcode.WHITE) {
whiteSpace++;
rootSize--;
correctSizes(-1, 0);
if(rootSize == 0) unlink(absoluteIndex - localIndex);
}
// Set a value at the trailing edge of this node
} else if(localIndex == whiteSpace + rootSize - 1) {
if(value == Barcode.WHITE) {
rootSize--;
if(right != null) {
treeRightSize++;
right.insertWhite(localIndex - whiteSpace - rootSize, 1);
correctSizes(-1, 0);
} else if(parent != null && parent.left == this) {
parent.whiteSpace++;
parent.treeLeftSize--;
parent.correctSizes(true, -1, 0);
} else {
correctSizes(-1, -1);
host.addWhite(absoluteIndex, 1);
}
}
// Set the value in this node
} else {
if(value == Barcode.WHITE) {
rootSize--;
correctSizes(-1, 0);
insertWhite(index, 1);
}
}
}
/**
* A helper method for a base-case condition where the first null on a node
* is set to a value. This value is moved to the node that it is compressed
* into before this method is called. This method may result in further
* compression.
*/
private void setFirstNullToTrue(int absoluteIndex, int index) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) {
treeLeftSize--;
left.setFirstNullToTrue(absoluteIndex, index);
// Recurse to the Right
} else if(localIndex > whiteSpace + rootSize - 1) {
treeRightSize--;
right.setFirstNullToTrue(absoluteIndex, localIndex - whiteSpace - rootSize);
// Affect this node
} else {
whiteSpace--;
compressNode(absoluteIndex);
}
}
/**
* Removes the values from the given index to index + length
*/
void remove(int index, int length) {
if(length == 1) removeBaseCase(index, index);
else remove(index, index, length);
}
private void remove(int absoluteIndex, int index, int length) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) {
left.remove(absoluteIndex, index, length);
// Recurse to the Right
} else if(localIndex > whiteSpace + rootSize - 1) {
right.remove(absoluteIndex, localIndex - whiteSpace - rootSize, length);
} else {
// Trim the length to only affect this node
length = Math.min(localIndex + length, whiteSpace + rootSize) - localIndex;
int endIndex = localIndex + length - 1;
// Remove white and possibly some, but not all, black
if(localIndex < whiteSpace && endIndex < whiteSpace + rootSize) {
int whiteChange = Math.min(whiteSpace - localIndex, length);
int blackChange = Math.max(endIndex - whiteSpace + 1, 0);
whiteSpace -= whiteChange;
rootSize -= blackChange;
correctSizes(-blackChange, -(whiteChange + blackChange));
compressNode(absoluteIndex - localIndex);
// Remove only black
} else if(localIndex > whiteSpace - 1) {
// Remove all black so unlink this node
if(length == rootSize) {
unlink(absoluteIndex - localIndex);
// Only remove some of the black
} else {
rootSize -= length;
correctSizes(-length, -length);
}
// Remove this entire node
} else {
int whiteChange = whiteSpace;
int blackChange = rootSize;
whiteSpace = 0;
rootSize = 0;
correctSizes(-blackChange, -(whiteChange + blackChange));
unlink(absoluteIndex - localIndex);
}
}
}
/**
* Removes the single value at a given index.
*/
void removeBaseCase(int absoluteIndex, int index) {
int localIndex = index - treeLeftSize;
// Recurse to the Left
if(localIndex < 0) {
treeLeftSize--;
left.removeBaseCase(absoluteIndex, index);
// Recurse to the Right
} else if(localIndex > whiteSpace + rootSize - 1) {
treeRightSize--;
right.removeBaseCase(absoluteIndex, localIndex - whiteSpace - rootSize);
// Remove from the middle of the white space
} else if(localIndex < whiteSpace) {
whiteSpace--;
compressNode(absoluteIndex);
// Remove from the black portion of this node
} else {
rootSize--;
if(rootSize == 0) {
rootSize = 1;
unlink(absoluteIndex - localIndex, false);
} else correctSizes(-1, 0);
}
}
/**
* Unlinks this node from the tree and clears it.
*/
private void unlink(int absoluteIndex) {
unlink(absoluteIndex, true);
}
private void unlink(int absoluteIndex, boolean consistent) {
// Two children exist
if(right != null && left != null) {
if(rootSize != 0) correctSizes(-rootSize, -rootSize, consistent);
unlinkWithTwoChildren();
// Only a right child exists
} else if(right != null) {
unlinkWithRightChild(consistent);
// A left child or no child exists, which are handled almost the same way
} else {
BarcodeNode replacement = null;
// Only a left child exists
if(left != null) {
replacement = left;
replacement.parent = parent;
// No children exist
} else replacement = null;
// Parent is null so significant empty space moves to the trailing nulls
if(parent == null) {
host.setRootNode(replacement);
if(whiteSpace != 0) host.addWhite(host.size() + 1, whiteSpace);
// This is a left child so empty space goes to the parent
} else if(parent.left == this) {
parent.whiteSpace += whiteSpace;
parent.treeLeftSize -= whiteSpace;
parent.left = replacement;
parent.ensureAVL();
if(rootSize != 0) parent.correctSizes(true, -rootSize, -rootSize, consistent);
clear();
// This is a right child so significant empty space must be reinserted
} else {
parent.right = replacement;
parent.ensureAVL();
if(whiteSpace != 0) {
parent.correctSizes(false, -rootSize, -(whiteSpace + rootSize), consistent);
host.addWhite(absoluteIndex, whiteSpace);
} else if(rootSize != 0) {
parent.correctSizes(false, -rootSize, -rootSize, consistent);
}
clear();
}
}
}
/**
* Unlinks this node in the special case where this node has both
* a left and right child.
*/
private void unlinkWithTwoChildren() {
// Get the replacement from the right subtree
BarcodeNode replacement = right.pruneSmallestChild();
BarcodeNode repParent = replacement.parent;
// Adjust sizes on this node
whiteSpace += replacement.whiteSpace;
rootSize = replacement.rootSize;
treeRightSize -= replacement.whiteSpace + replacement.rootSize;
blackRightSize -= replacement.rootSize;
// The smallest node is the right child of this
if(repParent == this) {
right = replacement.right;
if(right != null) right.parent = this;
ensureAVL();
// The smallest node is a left child in the right subtree
} else {
// linking on the right subtree needs updating
repParent.left = replacement.right;
if(repParent.left != null) repParent.left.parent = repParent;
repParent.ensureAVL();
}
replacement.clear();
}
/**
* Unlinks a node that has only a right child
*/
private void unlinkWithRightChild(boolean consistent) {
whiteSpace += right.whiteSpace;
int oldSize = rootSize;
rootSize = right.rootSize;
right.clear();
right = null;
blackRightSize = 0;
treeRightSize = 0;
height = 1;
if(parent != null) {
if(oldSize != 0) parent.correctSizes(parent.left == this, -oldSize, -oldSize, consistent);
parent.ensureAVL();
}
}
/**
* Prunes and returns the smallest child of the subtree rooted at this.
* Tree references are maintained out of necessity of the calling method,
* but sizes in the subtree are corrected accordingly.
*/
private BarcodeNode pruneSmallestChild() {
// Recurse to the left
if(left != null) {
BarcodeNode prunedNode = left.pruneSmallestChild();
blackLeftSize -= prunedNode.rootSize;
treeLeftSize -= prunedNode.whiteSpace + prunedNode.rootSize;
return prunedNode;
// return this node
} else return this;
}
/**
* A method to corrects sizes taking into account that the state of the
* cached tree sizes may be inconsistent from base-case set or remove.
*/
private void correctSizes(int blackOffset, int totalOffset, boolean consistent) {
if(consistent) correctSizes(blackOffset, totalOffset);
else correctSizes(-1, totalOffset - blackOffset);
}
/**
* A method to corrects sizes taking into account that the state of the
* cached tree sizes may be inconsistent from base-case set or remove.
*/
private void correctSizes(boolean leftChild, int blackOffset, int totalOffset, boolean consistent) {
if(consistent) correctSizes(leftChild, blackOffset, totalOffset);
else correctSizes(leftChild, -1, totalOffset - blackOffset);
}
/**
* Corrects all of the cached sizes up the tree by the given offsets starting
* at the parent if it exists.
*/
private void correctSizes(int blackOffset, int totalOffset) {
if(parent != null) parent.correctSizes(parent.left == this, blackOffset, totalOffset);
else host.treeSizeChanged();
}
/**
* Corrects all of the cached sizes up the tree by the given offsets starting
* from this.
*/
private void correctSizes(boolean leftChild, int blackOffset, int totalOffset) {
// left subtree is smaller
if(leftChild) {
blackLeftSize += blackOffset;
treeLeftSize += totalOffset;
// right subtree is smaller
} else {
blackRightSize += blackOffset;
treeRightSize += totalOffset;
}
// recurse up the tree to the root
if(parent != null) parent.correctSizes(parent.left == this, blackOffset, totalOffset);
// Notify the tree size has changed
else host.treeSizeChanged();
}
/**
* Clears this node and returns the value it had.
*/
private void clear() {
// clear the children
left = null;
blackLeftSize = 0;
treeLeftSize = 0;
right = null;
blackRightSize = 0;
treeRightSize = 0;
// clear this node
host = null;
parent = null;
whiteSpace = 0;
rootSize = 0;
height = -1;
}
/**
* Replaces a given child with the replacement node
*/
private void replace(BarcodeNode child, BarcodeNode replacement) {
// replacing the left child
if(child == left) left = replacement;
// Replacing the right child
else right = replacement;
}
/**
* Attempts to compress the current node out of the tree if possible
*/
private void compressNode(int absoluteIndex) {
// Fast fail if this node cannot be compressed
if(whiteSpace != 0) return;
// This is the root
if(parent == null) compressRoot(absoluteIndex);
// This is a left child
else if(parent.left == this) compressLeftChild(absoluteIndex);
// This is a right child
else compressRightChild(absoluteIndex);
}
/**
* Compresses the root node
*/
private void compressRoot(int absoluteIndex) {
// Compress to the left
if(left != null) {
// special case that's really fast
if(right == null) {
left.rootSize += rootSize;
left.parent = null;
host.setRootNode(left);
clear();
} else {
left.compressToTheRight(rootSize);
blackLeftSize += rootSize;
treeLeftSize += rootSize;
rootSize = 0;
unlink(absoluteIndex);
}
// The node is as compressed as possible
} else {
// Do Nothing
}
}
/**
* Compresses a node that is a left child
*/
private void compressLeftChild(int absoluteIndex) {
// Compress to the left
if(left != null) {
left.compressToTheRight(rootSize);
blackLeftSize += rootSize;
treeLeftSize += rootSize;
rootSize = 0;
unlink(absoluteIndex);
// Painful re-addition case
} else {
// This is the first value, can't compress it
if(absoluteIndex == 0) return;
// move the right child onto the parent
parent.left = right;
if(right != null) parent.left.parent = parent;
// fix tree state and re-add these values
parent.correctSizes(true, -rootSize, -rootSize);
parent.ensureAVL();
host.addBlack(absoluteIndex - 1, rootSize);
clear();
}
}
/**
* Compresses a node that is a right child
*/
private void compressRightChild(int absoluteIndex) {
// Compress to the parent
if(left == null) {
parent.blackRightSize -= rootSize;
parent.treeRightSize -= rootSize;
parent.rootSize += rootSize;
rootSize = 0;
unlink(absoluteIndex);
// Compress to the left
} else {
left.compressToTheRight(rootSize);
blackLeftSize += rootSize;
treeLeftSize += rootSize;
rootSize = 0;
unlink(absoluteIndex);
}
}
/**
* Compresses the given values into the largest node in this subtree.
*/
private void compressToTheRight(int values) {
if(right != null) {
blackRightSize += values;
treeRightSize += values;
right.compressToTheRight(values);
} else {
rootSize += values;
}
}
/**
* Ensures that the tree satisfies the AVL property. It is sufficient to
* recurse up the tree only as long as height recalculations are needed.
* As such, this method is intended to be called only on a node whose height
* may be out of sync due to an insertion or deletion. For example, calling
* this method on a leaf node will not guarantee that this tree satisfies the
* AVL property as it will not recurse.
*/
private void ensureAVL() {
int oldHeight = height;
recalculateHeight();
avlRotate();
// If adjustments were made, recurse up the tree
if(height != oldHeight && parent != null) parent.ensureAVL();
}
/**
* Recalculates the cached height at this level.
*/
private void recalculateHeight() {
int leftHeight = left == null ? 0 : left.height;
int rightHeight = right == null ? 0 : right.height;
height = 1 + Math.max(leftHeight, rightHeight);
}
/**
* Determines if AVL rotations are required and performs them if they are.
*/
private void avlRotate() {
// look up the left and right heights
int leftHeight = (left != null ? left.height : 0);
int rightHeight = (right != null ? right.height : 0);
// rotations will be on the left
if(leftHeight - rightHeight >= 2) {
// determine if a double rotation is necessary
int leftLeftHeight = (left.left != null ? left.left.height : 0);
int leftRightHeight = (left.right != null ? left.right.height : 0);
// Perform first half of double rotation if necessary
if(leftRightHeight > leftLeftHeight) left.rotateRight();
// Do the rotation for this node
rotateLeft();
// rotations will be on the right
} else if(rightHeight - leftHeight >= 2) {
// determine if a double rotation is necessary
int rightLeftHeight = (right.left != null ? right.left.height : 0);
int rightRightHeight = (right.right != null ? right.right.height : 0);
// Perform first half of double rotation if necessary
if(rightLeftHeight > rightRightHeight) right.rotateLeft();
// Do the rotation for this node
rotateRight();
}
}
/**
* AVL-Rotates this subtree with its left child.
*/
private void rotateLeft() {
// The replacement node is on the left
BarcodeNode replacement = left;
// take the right child of the replacement as my left child
left = replacement.right;
blackLeftSize = replacement.blackRightSize;
treeLeftSize = replacement.treeRightSize;
if(replacement.right != null) replacement.right.parent = this;
// set the right child of the replacement to this
replacement.right = this;
replacement.blackRightSize = blackSize();
replacement.treeRightSize = size();
// set the replacement's parent to my parent and mine to the replacement
if(parent != null) parent.replace(this, replacement);
// set a new tree root
else host.setRootNode(replacement);
// fix parent links on this and the replacement
replacement.parent = parent;
parent = replacement;
// recalculate height at this node
recalculateHeight();
// require height to be recalculated on the replacement node
replacement.height = 0;
}
/**
* AVL-Rotates this subtree with its right child.
*/
private void rotateRight() {
// The replacement node is on the right
BarcodeNode replacement = right;
// take the left child of the replacement as my right child
right = replacement.left;
blackRightSize = replacement.blackLeftSize;
treeRightSize = replacement.treeLeftSize;
if(replacement.left != null) replacement.left.parent = this;
// set the left child of the replacement to this
replacement.left = this;
replacement.blackLeftSize = blackSize();
replacement.treeLeftSize = size();
// set the replacement's parent to my parent and mine to the replacement
if(parent != null) parent.replace(this, replacement);
// set a new tree root
else host.setRootNode(replacement);
// fix parent links on this and the replacement
replacement.parent = parent;
parent = replacement;
// recalculate height at this node
recalculateHeight();
// require height to be recalculated on the replacement node
replacement.height = 0;
}
@Override
public String toString() {
return "[ " + left + " ("+ blackLeftSize +", " +treeLeftSize+")"
+" <"+whiteSpace+"> " + rootSize +" <"+height+"> "
+"(" + blackRightSize +", " +treeRightSize+") " + right + " ]";
}
/**
* Validates this node's state
*/
public void validate() {
validateLineage();
validateHeight();
validateTreeSize();
validateBlackSize();
validateCompression();
validateRootSize();
}
private int validateBlackSize() {
int leftTreeSize = left == null ? 0 : left.validateBlackSize();
int rightTreeSize = right == null ? 0 : right.validateBlackSize();
if(leftTreeSize != blackLeftSize) throw new IllegalStateException("Black Size Validation Failure in Left Subtree\n" + "Expected: " + leftTreeSize + "\nActual: " + blackLeftSize + "\n" + this);
if(rightTreeSize != blackRightSize) throw new IllegalStateException("Black Size Validation Failure in Right Subtree\n" + "Expected: " + rightTreeSize + "\nActual: " + blackRightSize + "\n" + this);
return leftTreeSize + rightTreeSize + rootSize;
}
private int validateHeight() {
int leftHeight = left == null ? 0 : left.validateHeight();
int rightHeight = right == null ? 0 : right.validateHeight();
// Validate that height is accurate at all
if(height != 1 + Math.max(leftHeight, rightHeight)) throw new IllegalStateException("Height Validation Failure\n" + "Expected: " + (1 + Math.max(leftHeight, rightHeight)) + "\nActual: " + height + "\n" + this);
// Validate that height meets the AVL property
if(Math.abs(leftHeight - rightHeight) > 1) throw new IllegalStateException("AVL Property Validation Failure\n" + this);
return 1 + Math.max(leftHeight, rightHeight);
}
private void validateLineage() {
if(left != null) {
if(left.parent != this) throw new IllegalStateException("Lineage Validation Failure\n" + "Left child is orphaned :\n" + left);
left.validateLineage();
}
if(right != null) {
if(right.parent != this) throw new IllegalStateException("Lineage Validation Failure\n" + "Right child is orphaned :\n" + right);
right.validateLineage();
}
}
private void validateCompression() {
if(left != null) left.validateCompression();
if(right != null) right.validateCompression();
if(whiteSpace == 0 && getIndexForValidation() != 0) throw new IllegalStateException("Compression Validation Failure\n" + "The following node was found that could be compressed: \n" + this);
}
private int validateTreeSize() {
int leftTreeSize = left == null ? 0 : left.validateTreeSize();
int rightTreeSize = right == null ? 0 : right.validateTreeSize();
if(treeLeftSize != leftTreeSize) throw new IllegalStateException("Tree Size Validation Failure\n" + "The following node was found that had a tree size failure on the left subtree: \n" + this);
if(treeRightSize != rightTreeSize) throw new IllegalStateException("Tree Size Validation Failure\n" + "The following node was found that had a tree size failure on the right subtree: \n" + this);
return treeLeftSize + whiteSpace + rootSize + treeRightSize;
}
/**
* Gets the index of the first element on this node. This is the index of
* the first WHITE element (or first BLACK if there is no whitespace on this node)
* indexed by this node.
*/
private int getIndexForValidation() {
if(parent != null) return parent.getIndexForValidation(this) + treeLeftSize;
return treeLeftSize;
}
private int getIndexForValidation(BarcodeNode child) {
// the child is on the left, return the index recursively
if(child == left) {
if(parent != null) return parent.getIndexForValidation(this);
return 0;
// the child is on the right, return the index recursively
} else {
if(parent != null) return parent.getIndexForValidation(this) + treeLeftSize + whiteSpace + rootSize;
return treeLeftSize + whiteSpace + rootSize;
}
}
private void validateRootSize() {
if(left != null) left.validateRootSize();
if(right != null) right.validateRootSize();
if(rootSize == 0) throw new IllegalStateException("Root Size Validation Failure\n" + "A node was found with a root size of zero.");
}
}
|