1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists.impl.adt;
// for iterators
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* A SparseListNode models a node in an SparseList. This class
* does the bulk of the heavy lifting for SparseList.
*
* @author <a href="mailto:kevin@swank.ca">Kevin Maltby</a>
*
*/
public final class SparseListNode {
/** the parent node */
private SparseListNode parent;
/** the tree that this node is a member of */
private SparseList host;
/** the left and right child nodes */
private SparseListNode left = null;
private SparseListNode right = null;
/** the size of the left subtree and right subtrees including empty space */
private int totalRightSize = 0;
private int totalLeftSize = 0;
/** the amount of empty space that preceeds this node */
private int emptySpace = 0;
/** the height of this subtree */
private int height = 1;
/** the value at this node */
private Object value = null;
/**
* Creates a new SparseListNode with the specified parent node, host tree and value.
*/
SparseListNode(SparseList host, SparseListNode parent, Object value) {
this.host = host;
this.parent = parent;
this.value = value;
}
/**
* This is a convienience constructor for creating a new SparseListNode
* with a given value and amount of preceeding empty space.
*/
SparseListNode(SparseList host, SparseListNode parent, Object value, int emptySpace) {
this(host, parent, value);
this.emptySpace = emptySpace;
}
/**
* Returns the size of the subtree rooted at this node
*/
int size() {
return totalLeftSize + emptySpace + totalRightSize + 1;
}
/**
* Inserts a value into the host tree.
*/
void insert(int index, Object value) {
int localizedIndex = index - totalLeftSize;
// Recurse to the Left adjusting sizes as you go
if(localizedIndex < 0) {
totalLeftSize++;
left.insert(index, value);
// Recurse to the Right adjusting sizes as you go
} else if(localizedIndex > emptySpace) {
totalRightSize++;
right.insert(localizedIndex - emptySpace - 1, value);
// Insert in the middle of the empty space
} else if(localizedIndex < emptySpace) {
emptySpace -= localizedIndex;
totalLeftSize += localizedIndex + 1;
if(left == null) {
left = new SparseListNode(host, this, value, localizedIndex);
ensureAVL();
} else {
left.insertAtEnd(value, localizedIndex);
}
// Insert at the same index as this node
} else {
insertAtThisNode(value);
}
}
/**
* Inserts a value into the host tree at an index where a value already
* exists. This will offset the current node's value by 1.
*/
private void insertAtThisNode(Object value) {
SparseListNode replacement = new SparseListNode(host, parent, value, emptySpace);
emptySpace = 0;
replacement.height = height;
height = 1;
replacement.totalRightSize = totalRightSize + 1;
// Since the left side will be unaffected by this insert, just 'move' it onto the replacement
replacement.left = left;
if(left != null) {
replacement.left.parent = replacement;
replacement.totalLeftSize = totalLeftSize;
totalLeftSize = 0;
left = null;
}
// Notify the host tree that the root has changed
if(parent == null) host.setRootNode(replacement);
// Replace this with the new child in the parent
else parent.replace(this, replacement);
// Move this to the right child of the replacement
if(right == null) {
parent = replacement;
replacement.right = this;
replacement.ensureAVL();
// Move this to be the smallest node in the right subtree
} else {
replacement.right = right;
replacement.right.parent = replacement;
totalRightSize = 0;
right = null;
replacement.right.moveToSmallest(this);
}
}
/**
* Inserts a value at the end of the tree rooted at this.
*/
void insertAtEnd(Object value, int leadingNulls) {
// Adjust sizes during recursion
totalRightSize += leadingNulls + 1;
// Recurse to the right
if(right != null) right.insertAtEnd(value, leadingNulls);
// Insert on the right
else {
right = new SparseListNode(host, this, value, leadingNulls);
ensureAVL();
}
}
/**
* Inserts multiple null values as empty space in the host tree.
*/
void insertEmptySpace(int index, int length) {
int localizedIndex = index - totalLeftSize;
// Recurse to the Left
if(localizedIndex < 0) {
totalLeftSize += length;
left.insertEmptySpace(index, length);
// Recurse to the Right
} else if(localizedIndex > emptySpace) {
totalRightSize += length;
right.insertEmptySpace(localizedIndex - emptySpace - 1, length);
// Insert at this node
} else {
emptySpace += length;
}
}
/**
* Moves a given node to be the smallest node in the subtree rooted at
* this.
*/
private void moveToSmallest(SparseListNode movingNode) {
// Adjust sizes during recursion
totalLeftSize += movingNode.emptySpace + 1;
// Recurse to the left
if(left != null) {
left.moveToSmallest(movingNode);
// Add the node as a left child of this
} else {
// Add the moving node on the left
movingNode.parent = this;
left = movingNode;
// Adjust heights and rotate if necessary
ensureAVL();
}
}
/**
* Gets the index of the value in this node. This is NOT the index of the
* first null indexed by this node.
*/
public int getIndex() {
if(parent != null) return parent.getIndex(this) + totalLeftSize + emptySpace;
return totalLeftSize + emptySpace;
}
private int getIndex(SparseListNode child) {
// the child is on the left, return the index recursively
if(child == left) {
if(parent != null) return parent.getIndex(this);
return 0;
// the child is on the right, return the index recursively
} else {
if(parent != null) return parent.getIndex(this) + totalLeftSize + emptySpace + 1;
return totalLeftSize + emptySpace + 1;
}
}
/**
* Gets the node with the given index, or null if that index is empty.
*/
SparseListNode getNode(int index) {
int localizedIndex = index - totalLeftSize;
// Recurse to the Left
if(localizedIndex < 0) return left.getNode(index);
// Recurse to the Right
else if(localizedIndex > emptySpace) return right.getNode(localizedIndex - emptySpace - 1);
// Get a null from the middle of the empty space
else if(localizedIndex < emptySpace) return null;
// Get this node
else return this;
}
/**
* Gets the value of this node.
*/
public Object getValue() {
return value;
}
/**
* Sets the value of this node and returns the replaced value.
* If the value is set to null, this node will be removed from
* the tree and clear() will be called.
*/
public Object setValue(Object value) {
// Just a simple set operation
if(value != null) {
Object oldValue = this.value;
this.value = value;
return oldValue;
// This node must be removed and replaced with empty space
} else {
emptySpace++;
return unlink();
}
}
/**
* Sets the value of the node at a given index.
*/
Object set(int index, Object value) {
int localizedIndex = index - totalLeftSize;
// Recurse to the Left
if(localizedIndex < 0) {
return left.set(index, value);
// Recurse to the Right
} else if(localizedIndex > emptySpace) {
return right.set(localizedIndex - emptySpace - 1, value);
// Set a value in the middle of the empty space
} else if(localizedIndex < emptySpace) {
if(value == null) return null;
emptySpace--;
insert(index, value);
return null;
// Set the value in this node
} else {
return setValue(value);
}
}
/**
* Removes and returns the value at the given index.
*/
Object remove(int index) {
int localizedIndex = index - totalLeftSize;
// Recurse to the Left
if(localizedIndex < 0) {
totalLeftSize--;
return left.remove(index);
// Recurse to the Right
} else if(localizedIndex > emptySpace) {
totalRightSize--;
return right.remove(localizedIndex - emptySpace - 1);
// Remove from the middle of the empty space
} else if(localizedIndex < emptySpace) {
emptySpace--;
return null;
// Remove from the value in this node
} else {
return unlink();
}
}
/**
* Unlinks this node from the tree and clears it.
*/
private Object unlink() {
int index = -1;
SparseListNode replacement = null;
boolean isLeftChild = false;
// Two children exist
if(right != null && left != null) {
return unlinkFromTwoChildren();
// Only a right child exists
} else if(right != null) {
replacement = right;
replacement.parent = parent;
replacement.emptySpace += emptySpace;
// A left child or no child exists, which are handled almost the same way
} else {
// Only a left child exists
if(left != null) {
replacement = left;
replacement.parent = parent;
// No children exist
} else replacement = null;
// Parent is null so empty space moves to the trailing nulls iff it is significant
if(parent == null) index = emptySpace == 0 ? -1 : host.size();
// This is a left child so empty space goes to the parent
else if(parent.left == this) {
isLeftChild = true;
parent.emptySpace += emptySpace;
parent.totalLeftSize -= emptySpace;
// Find the index of the empty space to insert it later iff it is significant
} else if(emptySpace != 0) index = getIndex() - emptySpace;
}
// This wasn't the root of the tree
if(parent != null) {
parent.replace(this, replacement);
parent.ensureAVL();
// This was the root so replace the reference in the host
} else {
host.setRootNode(replacement);
}
// Empty space needs to be reinserted elsewhere
if(index != -1) {
if(parent != null) parent.prepareForReinsert(isLeftChild, emptySpace);
host.addNulls(index, emptySpace);
}
return clear();
}
/**
* Unlinks this node in the special case where this node has both
* a left and right child.
*/
private Object unlinkFromTwoChildren() {
// Get the replacement from the right subtree
SparseListNode replacement = right.pruneSmallestChild();
SparseListNode repParent = replacement.parent;
replacement.emptySpace += emptySpace;
replacement.height = height;
// left subtree is unaffected so move it and cache sizes
replacement.left = left;
replacement.left.parent = replacement;
replacement.totalLeftSize = totalLeftSize;
// adjust replacement's parent link to this.parent
replacement.parent = parent;
// Notify the host tree that the root has changed
if(parent == null) host.setRootNode(replacement);
// Replace this with the new child in the parent
else parent.replace(this, replacement);
// The smallest node is the right child of this
if(repParent == this) replacement.ensureAVL();
// The smallest node is a left child in the right subtree
else {
// linking on the right subtree needs updating
repParent.left = replacement.right;
if(repParent.left != null) repParent.left.parent = repParent;
repParent.totalLeftSize = replacement.totalRightSize;
replacement.right = right;
replacement.right.parent = replacement;
replacement.totalRightSize = replacement.right.size();
repParent.ensureAVL();
}
return clear();
}
/**
* Prunes and returns the smallest child of the subtree rooted at this.
* Tree references are maintained out of necessity of the calling method,
* but sizes in the subtree are corrected accordingly.
*/
private SparseListNode pruneSmallestChild() {
// Recurse to the left
if(left != null) {
SparseListNode prunedNode = left.pruneSmallestChild();
totalLeftSize -= prunedNode.emptySpace + 1;
return prunedNode;
// return this node
} else return this;
}
/**
* Prepares this tree to have length nulls reinserted. This method
* recurses up the tree altering sizes so that the tree is in a
* consistent state for addNulls() to be called on the host tree.
*/
private void prepareForReinsert(boolean leftChild, int length) {
// left subtree is smaller
if(leftChild) totalLeftSize -= length;
// right subtree is smaller
else totalRightSize -= length;
// recurse up the tree to the root
if(parent != null) parent.prepareForReinsert(parent.left == this, length);
// Notify the tree size has changed
else host.treeSizeChanged();
}
/**
* Clears this node and returns the value it had.
*/
private Object clear() {
// clear the children
left = null;
totalLeftSize = 0;
right = null;
totalRightSize = 0;
// clear this node and return value
host = null;
parent = null;
emptySpace = 0;
height = -1;
Object thisValue = value;
value = null;
return thisValue;
}
/**
* Ensures that the tree satisfies the AVL property. It is sufficient to
* recurse up the tree only as long as height recalculations are needed.
* As such, this method is intended to be called only on a node whose height
* may be out of sync due to an insertion or deletion. For example, calling
* this method on a leaf node will not guarantee that this tree satisfies the
* AVL property as it will not recurse.
*/
private void ensureAVL() {
int oldHeight = height;
recalculateHeight();
avlRotate();
// If adjustments were made, recurse up the tree
if(height != oldHeight && parent != null) parent.ensureAVL();
}
/**
* Replaces a given child with the replacement node
*/
private void replace(SparseListNode child, SparseListNode replacement) {
// replacing the left child
if(child == left) left = replacement;
// Replacing the right child
else right = replacement;
}
/**
* Recalculates the cached height at this level.
*/
private void recalculateHeight() {
int leftHeight = left == null ? 0 : left.height;
int rightHeight = right == null ? 0 : right.height;
height = 1 + Math.max(leftHeight, rightHeight);
}
/**
* Determines if AVL rotations are required and performs them if they are.
*/
private void avlRotate() {
// look up the left and right heights
int leftHeight = (left != null ? left.height : 0);
int rightHeight = (right != null ? right.height : 0);
// rotations will be on the left
if(leftHeight - rightHeight >= 2) {
// determine if a double rotation is necessary
int leftLeftHeight = (left.left != null ? left.left.height : 0);
int leftRightHeight = (left.right != null ? left.right.height : 0);
// Perform first half of double rotation if necessary
if(leftRightHeight > leftLeftHeight) left.rotateRight();
// Do the rotation for this node
rotateLeft();
// rotations will be on the right
} else if(rightHeight - leftHeight >= 2) {
// determine if a double rotation is necessary
int rightLeftHeight = (right.left != null ? right.left.height : 0);
int rightRightHeight = (right.right != null ? right.right.height : 0);
// Perform first half of double rotation if necessary
if(rightLeftHeight > rightRightHeight) right.rotateLeft();
// Do the rotation for this node
rotateRight();
}
}
/**
* AVL-Rotates this subtree with its left child.
*/
private void rotateLeft() {
// The replacement node is on the left
SparseListNode replacement = left;
// take the right child of the replacement as my left child
left = replacement.right;
totalLeftSize = replacement.totalRightSize;
if(replacement.right != null) replacement.right.parent = this;
// set the right child of the replacement to this
replacement.right = this;
replacement.totalRightSize = size();
// set the replacement's parent to my parent and mine to the replacement
if(parent != null) parent.replace(this, replacement);
// set a new tree root
else host.setRootNode(replacement);
// fix parent links on this and the replacement
replacement.parent = parent;
parent = replacement;
// recalculate height at this node
recalculateHeight();
// require height to be recalculated on the replacement node
replacement.height = 0;
}
/**
* AVL-Rotates this subtree with its right child.
*/
private void rotateRight() {
// The replacement node is on the right
SparseListNode replacement = right;
// take the left child of the replacement as my right child
right = replacement.left;
totalRightSize = replacement.totalLeftSize;
if(replacement.left != null) replacement.left.parent = this;
// set the left child of the replacement to this
replacement.left = this;
replacement.totalLeftSize = size();
// set the replacement's parent to my parent and mine to the replacement
if(parent != null) parent.replace(this, replacement);
// set a new tree root
else host.setRootNode(replacement);
// fix parent links on this and the replacement
replacement.parent = parent;
parent = replacement;
// recalculate height at this node
recalculateHeight();
// require height to be recalculated on the replacement node
replacement.height = 0;
}
/**
* For debugging purposes.
*/
@Override
public String toString() {
return "[ " + left + " <"+emptySpace+"> " + value +" <"+height+"> "
+ right + " ]";
}
/**
* Corrects all the cached sizes up the tree by the given offsets starting
* from this so an Iterator can perform a fast remove.
*/
private void correctSizes(int sizeChange) {
if(parent != null) {
// left subtree has changed in size
if(parent.left == this) totalLeftSize += sizeChange;
// right subtree has changed in size
else totalRightSize += sizeChange;
// recurse up the tree to the root
parent.correctSizes(sizeChange);
// Notify the host tree that the size has changed
} else host.treeSizeChanged();
}
/**
* A specialized Iterator that will significantly outperform the default
* one provided by AbstractList when acting on this ADT.
*/
final static class SparseListIterator implements Iterator {
/** the current SparseListNode being inspected */
private SparseListNode currentNode = null;
/** the number of times the current node has been requested */
private int timesRequested = -1;
/** a reference to the SparseList for removal of trailing nulls */
private SparseList sparseList = null;
/** the size of the actual tree within the SparseList*/
private int treeSize = 0;
/** the size of the list */
private int size = 0;
/** the current index being inspected */
private int index = -1;
/**
* Creates a new Iterator that is optimized for SparseLists.
*/
SparseListIterator(SparseList sparseList, SparseListNode root) {
// move the Iterator to the start position.
if(root != null) {
this.treeSize = root.size();
currentNode = root;
while(currentNode.left != null) {
currentNode = currentNode.left;
}
}
this.sparseList = sparseList;
this.size = sparseList.size();
}
/**
* Returns whether or not there are more values in the SparseList to
* iterate over.
*/
public boolean hasNext() {
if(index >= treeSize - 1 && index == size - 1) {
return false;
}
return true;
}
/**
* Gets the next value in this SparseList.
*/
public Object next() {
// iterate on this node
timesRequested++;
index++;
// handle the empty tree case
if(currentNode == null) {
// beyond the tree in the trailing nulls
if(index < size) {
return null;
// at the end of the list
} else {
throw new NoSuchElementException();
}
// at the edge of the current node
} else if(timesRequested > currentNode.emptySpace) {
// move to the next node
if(index < treeSize) {
findNextNode();
timesRequested = 0;
// act on the trailing nulls
} else {
// beyond the tree in the trailing nulls
if(index < size) {
return null;
// at the end of the list
} else {
throw new NoSuchElementException();
}
}
}
// next() was a null value
if(timesRequested < currentNode.emptySpace) {
return null;
// next() was the value of this node
} else if(timesRequested == currentNode.emptySpace) {
return currentNode.value;
// the iterator is out of state
} else {
throw new IllegalStateException();
}
}
/**
* Removes the current value at the Iterator from the SparseList.
*
* @throws UnsupportedOperationException This feature is not yet implemented.
*
*/
public void remove() {
// handle the uninitialized iterator case
if(timesRequested == -1) {
throw new IllegalStateException("Cannot remove() without a prior call to next()");
// remove from the trailing nulls
} else if(currentNode == null || index >= treeSize) {
sparseList.remove(index);
// remove a null
} else if(timesRequested < currentNode.emptySpace) {
currentNode.correctSizes(-1);
currentNode.emptySpace--;
// remove a value
} else if(timesRequested == currentNode.emptySpace) {
currentNode.correctSizes(-1);
SparseListNode nodeToRemove = currentNode;
findNextNode();
timesRequested = -1;
nodeToRemove.unlink();
// the iterator is out of state
} else {
throw new IllegalStateException();
}
}
/**
* Finds the next node in the tree.
*/
private void findNextNode() {
// go into the right subtree for the next node
if(currentNode.right != null) {
currentNode = currentNode.right;
while(currentNode.left != null) {
currentNode = currentNode.left;
}
// go to the parent for the next node
} else if(currentNode.parent.left == currentNode) {
currentNode = currentNode.parent;
// get out of the right subtree
} else if(currentNode.parent.right == currentNode) {
// move to the top of the current subtree
while(currentNode.parent.right == currentNode) {
currentNode = currentNode.parent;
}
// Move up one more node to leave the subtree
currentNode = currentNode.parent;
// the iterator is out of state
} else {
throw new IllegalStateException();
}
}
/**
* Finds the previous node in the tree.
*/
private void findPreviousNode() {
throw new UnsupportedOperationException("Not implemented yet.");
}
@Override
public String toString() {
return "Accessing " + currentNode + " for the " + timesRequested + " time.";
}
}
}
|