1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists.impl.adt.barcode2;
import java.util.NoSuchElementException;
/*
m4_include(source/ca/odell/glazedlists/impl/adt/barcode2/JavaMacros.m4)
m4_include(source/ca/odell/glazedlists/impl/adt/barcode2/TreeMacros.m4)
*/
/*[ BEGIN_M4_JAVA ]*/
/**
* Iterate through a {@link BciiTree}, one element at a time.
*
* <p>We should consider adding the following enhancements to this class:
* <li>writing methods, such as <code>set()</code> and <code>remove()</code>.
* <li>a default color, specified at construction time, that shall always be
* used as the implicit parameter to overloaded versions of {@link #hasNext}
* and {@link #next}.
*
* @author <a href="mailto:jesse@swank.ca">Jesse Wilson</a>
*/
public class BciiTreeIterator/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ {
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `int counti(i);
')
GENERATED_CODE_END
EXAMPLE_START ]*/
int count1;
int count2;
int count4;
/*[ EXAMPLE_END ]*/
private BciiTree/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ tree;
private BciiNode/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ node;
private int index;
public BciiTreeIterator/**/(BciiTree/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ tree) {
this(tree, 0, (byte)0);
}
/**
* Create an iterator starting at the specified index.
*
* @param tree the tree to iterate
* @param nextIndex the index to be returned after calling {@link #next next()}.
* @param nextIndexColors the colors to interpret nextIndex in terms of
*/
public BciiTreeIterator/**/(BciiTree/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ tree, int nextIndex, byte nextIndexColors) {
this.tree = tree;
// if the start is, we need to find the node in the tree
if(nextIndex != 0) {
int currentIndex = nextIndex - 1;
this.node = (/*[ NODENAME_START ]*/ BciiNode<T0,T1> /*[ NODENAME_END ]*/)tree.get(currentIndex /*[ COLORED_START ]*/, nextIndexColors /*[ COLORED_END ]*/);
// find the counts
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`count1 = currentIndex;
', counti(i)` = tree.convertIndexColor(currentIndex, nextIndexColors, (byte)'indexToBit(i)`) + (node.color == 'indexToBit(i)` ? 0 : 1);
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
count1 = tree.convertIndexColor(currentIndex, nextIndexColors, (byte)1) + (node.color == 1 ? 0 : 1);
count2 = tree.convertIndexColor(currentIndex, nextIndexColors, (byte)2) + (node.color == 2 ? 0 : 1);
count4 = tree.convertIndexColor(currentIndex, nextIndexColors, (byte)4) + (node.color == 4 ? 0 : 1);
/*[ EXAMPLE_END ]*/
// find out the index in the node
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`this.index = count1 - tree.indexOfNode(this.node, (byte)1);
',`if(node.color == 'indexToBit(i)`) this.index = 'counti(i)` - tree.indexOfNode(this.node, '(byte)indexToBit(i)`);
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if(node.color == 1) this.index = count1 - tree.indexOfNode(this.node, (byte)1);
if(node.color == 2) this.index = count2 - tree.indexOfNode(this.node, (byte)2);
if(node.color == 4) this.index = count4 - tree.indexOfNode(this.node, (byte)4);
/*[ EXAMPLE_END ]*/
// just start before the beginning of the tree
} else {
this.node = null;
this.index = 0;
}
}
/**
* Create a {@link BciiTreeIterator} exactly the same as this one.
* The iterators will be backed by the same tree but maintain
* separate cursors into the tree.
*/
public BciiTreeIterator/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ copy() {
BciiTreeIterator/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/ result = new BciiTreeIterator/*[ TYPELIST_START ]*/ <T0,T1> /*[ TYPELIST_END ]*/(tree);
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `result.counti(i) = this.counti(i);
')
GENERATED_CODE_END
EXAMPLE_START ]*/
result.count1 = this.count1;
result.count2 = this.count2;
result.count4 = this.count4;
/*[ EXAMPLE_END ]*/
result.node = node;
result.index = index;
return result;
}
/**
* @return <code>true</code> if there's an element of the specified color in
* this tree following the current element.
*/
public boolean hasNext(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(node == null) {
return tree.size(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) > 0;
} else if(/*[ COLORED_START(true) ]*/ (colors & node.color) != 0 /*[ COLORED_END ]*/) {
return index(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) < tree.size(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) - 1;
} else {
return index(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) < tree.size(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/);
}
}
/**
* @return <code>true</code> if there's a node of the specified color in this
* tree following the current node.
*/
public boolean hasNextNode(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(node == null) {
return tree.size(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) > 0;
} else {
return nodeEndIndex(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/) < tree.size(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/);
}
}
/**
* Step to the next element.
*/
public void next(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(!hasNext(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/)) {
throw new NoSuchElementException();
}
// start at the first node in the tree
if(node == null) {
node = tree.firstNode();
index = 0;
/*[ COLORED_START ]*/if((node.color & colors) != 0) /*[ COLORED_END ]*/ return;
// increment within the current node
} else if(/*[ COLORED_START ]*/ (node.color & colors) != 0 && /*[ COLORED_END ]*/ index < /*[ WIDE_NODES_START(1) ]*/ node.size /*[ WIDE_NODES_END ]*/ - 1) {
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`count1++;
', `if(node.color == indexToBit(i)) counti(i)++;
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if(node.color == 1) count1++;
if(node.color == 2) count2++;
if(node.color == 4) count4++;
/*[ EXAMPLE_END ]*/
index++;
return;
}
// scan through the nodes, looking for the first one of the right color
while(true) {
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`count1 += NODE_SIZE(node, colors) - index;
', `if(node.color == indexToBit(i)) counti(i) += node.size - index;
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if(node.color == 1) count1 += node.size - index;
if(node.color == 2) count2 += node.size - index;
if(node.color == 4) count4 += node.size - index;
/*[ EXAMPLE_END ]*/
node = BciiTree.next(node);
index = 0;
// we've found a node that meet our requirements, so return
/*[ COLORED_START ]*/ if((node.color & colors) != 0) /*[ COLORED_END ]*/ break;
}
}
/**
* Step to the next node.
*/
public void nextNode(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(!hasNextNode(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/)) {
throw new NoSuchElementException();
}
// start at the first node in the tree
if(node == null) {
node = tree.firstNode();
index = 0;
/*[ COLORED_START ]*/if((node.color & colors) != 0) /*[ COLORED_END ]*/ return;
}
// scan through the nodes, looking for the first one of the right color
while(true) {
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`count1 += NODE_SIZE(node, colors) - index;
', `if(node.color == indexToBit(i)) counti(i) += node.size - index;
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if(node.color == 1) count1 += node.size - index;
if(node.color == 2) count2 += node.size - index;
if(node.color == 4) count4 += node.size - index;
/*[ EXAMPLE_END ]*/
node = BciiTree.next(node);
index = 0;
// we've found a node that meet our requirements, so return
/*[ COLORED_START ]*/ if((node.color & colors) != 0) /*[ COLORED_END ]*/ break;
}
}
/**
* Get the size of the current node, or 0 if it's color doesn't match those
* specified.
*/
public int nodeSize(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(/*[ COLORED_START(true) ]*/ (node.color & colors) != 0 /*[ COLORED_END ]*/) {
return /*[ WIDE_NODES_START(1) ]*/ node.size /*[ WIDE_NODES_END ]*/;
} else {
return 0;
}
}
/*[ COLORED_START ]*/
/**
* The color of the current element.
*/
public byte color() {
if(node == null) throw new IllegalStateException();
return node.color;
}
/*[ COLORED_END ]*/
/**
* Expected values for index should be in the range ( 0, size() - 1 )
*/
public int index(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(node == null) throw new NoSuchElementException();
// total the values of the specified array for the specified colors.
int result = 0;
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`result += count1;
', `if((colors & indexToBit(i)) != 0) result += counti(i);
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if((colors & 1) != 0) result += count1;
if((colors & 2) != 0) result += count2;
if((colors & 4) != 0) result += count4;
/*[ EXAMPLE_END ]*/
return result;
}
/**
* Get the index of the current node's start.
*/
public int nodeStartIndex(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(node == null) throw new NoSuchElementException();
// the count of all nodes prior to this one
int result = 0;
// this should merely be the sum of each count
/*[ GENERATED_CODE_START
forloop(`i', 0, VAR_LAST_COLOR_INDEX, `m4_ifelse(VAR_COLOUR_COUNT,`1',`result += count1;
', `if((colors & indexToBit(i)) != 0) result += counti(i);
')')
GENERATED_CODE_END
EXAMPLE_START ]*/
if((colors & 1) != 0) result += count1;
if((colors & 2) != 0) result += count2;
if((colors & 4) != 0) result += count4;
/*[ EXAMPLE_END ]*/
// subtract the count of anything in the current node which we may
// have included inadvertently
if(/*[ COLORED_START(true) ]*/ (node.color & colors) != 0 /*[ COLORED_END ]*/) {
result -= index;
}
return result;
}
/**
* Get the index of the node immediately following the current. Expected
* values are in the range ( 1, size() )
*/
public int nodeEndIndex(/*[ COLORED_START ]*/ byte colors /*[ COLORED_END ]*/) {
if(node == null) throw new NoSuchElementException();
// the count of all nodes previous
return nodeStartIndex(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/)
+ nodeSize(/*[ COLORED_START ]*/ colors /*[ COLORED_END ]*/);
}
public T0 value() {
if(node == null) throw new IllegalStateException();
return node.get();
}
public Element<T0> node() {
if(node == null) throw new IllegalStateException();
return node;
}
}
/*[ END_M4_JAVA ]*/
|