1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
|
/* Glazed Lists (c) 2003-2006 */
/* http://publicobject.com/glazedlists/ publicobject.com,*/
/* O'Dell Engineering Ltd.*/
package ca.odell.glazedlists.impl.adt.barcode2;
import ca.odell.glazedlists.GlazedLists;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;
/*
# some M4 Macros that make it easy to use m4 with Java
M4 Macros
# define a function NODE_WIDTH(boolean) to get the node's size for this color
# define a function NODE_SIZE(node, colors) to no node.nodeSize()
# define a function to refresh counts
# multiple values
*/
/*[ BEGIN_M4_JAVA ]*/
/**
* Our second generation tree class.
*
* <p>Currently the API for this class is fairly low-level, particularly the
* use of <code>byte</code>s as color values. This is an implementation detail,
* exposed to maximize performance. Wherever necessary, consider creating a
* facade around this <code>Tree</code> class that provides methods more appropriate
* for your particular application.
*
* <p>This is a prototype replacement for the <code>Barcode</code> class that adds support
* for up to seven different colors. As well, this supports values in the node.
* It will hopefully also replace our <code>IndexedTree</code> class. This class
* is designed after those two classes and hopefully improves upon them in
* a few interesting ways:
* <li>Avoid recursion wherever possible to increase performance
* <li>Be generic to simplify handling of black/white values. These can be
* handled in one case rather than one case for each.
* <li>Make the node class a dataholder only and put most of the logic in
* the tree class. This allows us to share different Node classes with
* different memory requirements, while using the same logic class
*
* <p>This class came into being so we could use a tree to replace
* <code>ListEventBlock</code>s, which has only mediocre performance, particularly
* due to having to sort elements. As well, we might be able to keep a moved
* value in the tree, to support moved elements in <code>ListEvent</code>s.
*
* @author <a href="mailto:jesse@swank.ca">Jesse Wilson</a>
*/
public class SimpleTree < T0> {
/** the tree's root, or <code>null</code> for an empty tree */
private SimpleNode < T0> root = null;
/**
* a list to add all nodes to that must be removed from
* the tree. The nodes are removed only after the tree has been modified,
* which allows us a chance to do rotations without losing our position
* in the tree.
*/
private final List< SimpleNode < T0> > zeroQueue = new ArrayList< SimpleNode < T0> >();
/**
* The comparator to use when performing ordering operations on the tree.
* Sometimes this tree will not be sorted, so in such situations this
* comparator will not be used.
*/
private final Comparator<? super T0> comparator;
/**
* @param coder specifies the node colors
* @param comparator the comparator to use when ordering values within the
* tree. If this tree is unsorted, use the one-argument constructor.
*/
public SimpleTree/**/( Comparator<? super T0> comparator) {
if(comparator == null) throw new NullPointerException("Comparator cannot be null.");
this.comparator = comparator;
}
/**
* @param coder specifies the node colors
*/
public SimpleTree/**/( ) {
this( (Comparator)GlazedLists.comparableComparator());
}
public Comparator<? super T0> getComparator() {
return comparator;
}
/**
* Get the tree element at the specified index relative to the specified index
* colors.
*
* <p>This method is an hotspot, so its crucial that it run as efficiently
* as possible.
*/
public Element<T0> get(int index ) {
if(root == null) throw new IndexOutOfBoundsException();
// go deep, looking for our node of interest
SimpleNode < T0> node = root;
while(true) {
assert(node != null);
assert(index >= 0);
// recurse on the left
SimpleNode < T0> nodeLeft = node.left;
int leftSize = nodeLeft != null ? nodeLeft. count1 : 0;
if(index < leftSize) {
node = nodeLeft;
continue;
} else {
index -= leftSize;
}
// the result is in the centre
int size = 1 ;
if(index < size) {
return node;
} else {
index -= size;
}
// the result is on the right
node = node.right;
}
}
/**
* Add a tree node at the specified index relative to the specified index
* colors. The inserted nodes' color, value and size are specified.
*
* <p><strong>Note that nodes with <code>null</code> values will never be
* merged together to allow those nodes to be assigned other values later.
*
* @param size the size of the node to insert.
* @param index the location into this tree to insert at
* @param indexColors the colors that index is relative to. This should be
* all colors in the tree ORed together for the entire tree.
* @param value the node value. If non-<code>null</code>, the node may be
* combined with other nodes of the same color and value. <code>null</code>
* valued nodes will never be combined with each other.
* @return the element the specified value was inserted into. This is non-null
* unless the size parameter is 0, in which case the result is always
* <code>null</code>.
*/
public Element<T0> add(int index, T0 value, int size) {
assert(index >= 0);
assert(index <= size( ));
assert(size >= 0);
if(this.root == null) {
if(index != 0) throw new IndexOutOfBoundsException();
this.root = new SimpleNode < T0> ( size, value, null);
assert(valid());
return this.root;
} else {
SimpleNode < T0> inserted = insertIntoSubtree(root, index, value, size);
assert(valid());
return inserted;
}
}
/**
* @param parent the subtree to insert into, must not be null.
* @param index the color index to insert at
* @param indexColors a bitmask of all colors that the index is defined in
* terms of. For example, if this is determined in terms of colors 4, 8
* and 32, then the value here should be 44 (32 + 8 + 4).
* @param color a bitmask value such as 1, 2, 4, 8, 16, 32, 64 or 128.
* @param value the object to hold in the inserted node.
* @param size the size of the inserted node, with respect to indices.
* @return the inserted node, or the modified node if this insert simply
* increased the size of an existing node.
*/
private SimpleNode < T0> insertIntoSubtree( SimpleNode < T0> parent, int index, T0 value, int size) {
while(true) {
assert(parent != null);
assert(index >= 0);
// figure out the layout of this node
SimpleNode < T0> parentLeft = parent.left;
int parentLeftSize = parentLeft != null ? parentLeft. count1 : 0;
int parentRightStartIndex = parentLeftSize + 1 ;
// the first thing we want to try is to merge this value into the
// current node, since that's the cheapest thing to do:
if( false && value == parent.t0 && value != null) {
if(index >= parentLeftSize && index <= parentRightStartIndex) {
fixCountsThruRoot(parent, size);
return parent;
}
}
// we can insert on the left
if(index <= parentLeftSize) {
// as a new left child
if(parentLeft == null) {
SimpleNode < T0> inserted = new SimpleNode < T0> ( size, value, parent);
parent.left = inserted;
fixCountsThruRoot(parent, size);
fixHeightPostChange(parent, false);
return inserted;
// recurse on the left
} else {
parent = parentLeft;
continue;
}
}
// we need to insert in the centre. This works by splitting in the
// centre, and inserting the value
if(index < parentRightStartIndex) {
int parentRightHalfSize = parentRightStartIndex - index;
fixCountsThruRoot(parent, -parentRightHalfSize);
// insert as null first to make sure this doesn't get merged back
Element<T0> inserted = insertIntoSubtree(parent, index, null, parentRightHalfSize);
inserted.set(parent.t0);
// recalculate parentRightStartIndex, since that should have
// changed by now. this will then go on to insert on the right
parentRightStartIndex = parentLeftSize + 1 ;
}
// on the right
right: {
int parentSize = parent. count1 ;
assert(index <= parentSize);
SimpleNode < T0> parentRight = parent.right;
// as a right child
if(parentRight == null) {
SimpleNode < T0> inserted = new SimpleNode < T0> ( size, value, parent);
parent.right = inserted;
fixCountsThruRoot(parent, size);
fixHeightPostChange(parent, false);
return inserted;
// recurse on the right
} else {
parent = parentRight;
index -= parentRightStartIndex;
}
}
}
}
/**
* Add a tree node in sorted order.
*
* @param size the size of the node to insert.
* @param value the node value. If non-<code>null</code>, the node may be
* combined with other nodes of the same color and value. <code>null</code>
* valued nodes will never be combined with each other.
* @return the element the specified value was inserted into. This is non-null
* unless the size parameter is 0, in which case the result is always
* <code>null</code>.
*/
public Element<T0> addInSortedOrder(byte color, T0 value, int size) {
assert(size >= 0);
if(this.root == null) {
this.root = new SimpleNode < T0> ( size, value, null);
assert(valid());
return this.root;
} else {
SimpleNode < T0> inserted = insertIntoSubtreeInSortedOrder(root, value, size);
assert(valid());
return inserted;
}
}
/**
* @param parent the subtree to insert into, must not be null.
* @param color a bitmask value such as 1, 2, 4, 8, 16, 32, 64 or 128.
* @param value the object to hold in the inserted node.
* @param size the size of the inserted node, with respect to indices.
* @return the inserted node, or the modified node if this insert simply
* increased the size of an existing node.
*/
private SimpleNode < T0> insertIntoSubtreeInSortedOrder( SimpleNode < T0> parent, T0 value, int size) {
while(true) {
assert(parent != null);
// calculating the sort side is a little tricky since we can have
// unsorted nodes in the tree. we just look for a neighbour (ie next)
// that is sorted, and compare with that
int sortSide;
for( SimpleNode < T0> currentFollower = parent; true; currentFollower = next(currentFollower)) {
// we've hit the end of the list, assume the element is on the left side
if(currentFollower == null) {
sortSide = -1;
break;
// we've found a comparable node, use it
} else if(currentFollower.sorted == Element.SORTED) {
sortSide = comparator.compare(value, currentFollower.t0);
break;
}
}
// the first thing we want to try is to merge this value into the
// current node, since that's the cheapest thing to do:
if( false && sortSide == 0 && value == parent.t0 && value != null) {
fixCountsThruRoot(parent, size);
return parent;
}
// insert on the left...
boolean insertOnLeft = false;
insertOnLeft = insertOnLeft || sortSide < 0;
insertOnLeft = insertOnLeft || sortSide == 0 && parent.left == null;
insertOnLeft = insertOnLeft || sortSide == 0 && parent.right != null && parent.left.height < parent.right.height;
if(insertOnLeft) {
SimpleNode < T0> parentLeft = parent.left;
// as a new left child
if(parentLeft == null) {
SimpleNode < T0> inserted = new SimpleNode < T0> ( size, value, parent);
parent.left = inserted;
fixCountsThruRoot(parent, size);
fixHeightPostChange(parent, false);
return inserted;
// recurse on the left
} else {
parent = parentLeft;
continue;
}
// ...or on the right
} else {
SimpleNode < T0> parentRight = parent.right;
// as a right child
if(parentRight == null) {
SimpleNode < T0> inserted = new SimpleNode < T0> ( size, value, parent);
parent.right = inserted;
fixCountsThruRoot(parent, size);
fixHeightPostChange(parent, false);
return inserted;
// recurse on the right
} else {
parent = parentRight;
}
}
}
}
/**
* Adjust counts for all nodes (including the specified node) up the tree
* to the root. The counts of the specified color are adjusted by delta
* (which may be positive or negative).
*/
private final void fixCountsThruRoot( SimpleNode < T0> node, int delta) {
for( ; node != null; node = node.parent) node.count1 += delta;
}
/**
* Fix the height of the specified ancestor after inserting a child node.
* This method short circuits when it finds the first node where the size
* has not changed.
*
* @param node the root of a changed subtree. This shouldn't be called
* on inserted nodes, but rather their parent nodes, since only
* the parent nodes sizes will be changing.
* @param allTheWayToRoot <code>true</code> to walk up the tree all the way
* to the tree's root, or <code>false</code> to walk up until the height
* is unchanged. We go to the root on a delete, since the rotate is on
* the opposite side of the tree, whereas on an insert we only delete
* as far as necessary.
*/
private final void fixHeightPostChange( SimpleNode < T0> node, boolean allTheWayToRoot) {
// update the height
for(; node != null; node = node.parent) {
byte leftHeight = node.left != null ? node.left.height : 0;
byte rightHeight = node.right != null ? node.right.height : 0;
// rotate left?
if(leftHeight > rightHeight && (leftHeight - rightHeight == 2)) {
// do we need to rotate the left child first?
int leftLeftHeight = node.left.left != null ? node.left.left.height : 0;
int leftRightHeight = node.left.right != null ? node.left.right.height : 0;
if(leftRightHeight > leftLeftHeight) {
rotateRight(node.left);
}
// finally rotate right
node = rotateLeft(node);
// rotate right?
} else if(rightHeight > leftHeight && (rightHeight - leftHeight == 2)) {
// do we need to rotate the right child first?
int rightLeftHeight = node.right.left != null ? node.right.left.height : 0;
int rightRightHeight = node.right.right != null ? node.right.right.height : 0;
if(rightLeftHeight > rightRightHeight) {
rotateLeft(node.right);
}
// finally rotate left
node = rotateRight(node);
}
// update the node height
leftHeight = node.left != null ? node.left.height : 0;
rightHeight = node.right != null ? node.right.height : 0;
byte newNodeHeight = (byte) (Math.max(leftHeight, rightHeight) + 1);
// if the height doesn't need updating, we might just be done!
if(!allTheWayToRoot && node.height == newNodeHeight) return;
// otherwise change the height and keep rotating
node.height = newNodeHeight;
}
}
/**
* Perform an AVL rotation of the tree.
*
* D B
* / \ ROTATE / \
* B E LEFT AT A D
* / \ NODE D / \
* A C C E
*
* @return the new root of the subtree
*/
private final SimpleNode < T0> rotateLeft( SimpleNode < T0> subtreeRoot) {
assert(subtreeRoot.left != null);
// subtreeRoot is D
// newSubtreeRoot is B
SimpleNode < T0> newSubtreeRoot = subtreeRoot.left;
// modify the links between nodes
// attach C as a child of to D
subtreeRoot.left = newSubtreeRoot.right;
if(newSubtreeRoot.right != null) newSubtreeRoot.right.parent = subtreeRoot;
// link b as the new root node for this subtree
newSubtreeRoot.parent = subtreeRoot.parent;
if(newSubtreeRoot.parent != null) {
if(newSubtreeRoot.parent.left == subtreeRoot) newSubtreeRoot.parent.left = newSubtreeRoot;
else if(newSubtreeRoot.parent.right == subtreeRoot) newSubtreeRoot.parent.right = newSubtreeRoot;
else throw new IllegalStateException();
} else {
root = newSubtreeRoot;
}
// attach D as a child of B
newSubtreeRoot.right = subtreeRoot;
subtreeRoot.parent = newSubtreeRoot;
// update height and counts of the old subtree root
byte subtreeRootLeftHeight = subtreeRoot.left != null ? subtreeRoot.left.height : 0;
byte subtreeRootRightHeight = subtreeRoot.right != null ? subtreeRoot.right.height : 0;
subtreeRoot.height = (byte)(Math.max(subtreeRootLeftHeight, subtreeRootRightHeight) + 1);
subtreeRoot.refreshCounts(!zeroQueue.contains(subtreeRoot));
// update height and counts of the new subtree root
byte newSubtreeRootLeftHeight = newSubtreeRoot.left != null ? newSubtreeRoot.left.height : 0;
byte newSubtreeRootRightHeight = newSubtreeRoot.right != null ? newSubtreeRoot.right.height : 0;
newSubtreeRoot.height = (byte)(Math.max(newSubtreeRootLeftHeight, newSubtreeRootRightHeight) + 1);
newSubtreeRoot.refreshCounts(!zeroQueue.contains(newSubtreeRoot));
return newSubtreeRoot;
}
private final SimpleNode < T0> rotateRight( SimpleNode < T0> subtreeRoot) {
assert(subtreeRoot.right != null);
// subtreeRoot is D
// newSubtreeRoot is B
SimpleNode < T0> newSubtreeRoot = subtreeRoot.right;
// modify the links between nodes
// attach C as a child of to D
subtreeRoot.right = newSubtreeRoot.left;
if(newSubtreeRoot.left != null) newSubtreeRoot.left.parent = subtreeRoot;
// link b as the new root node for this subtree
newSubtreeRoot.parent = subtreeRoot.parent;
if(newSubtreeRoot.parent != null) {
if(newSubtreeRoot.parent.left == subtreeRoot) newSubtreeRoot.parent.left = newSubtreeRoot;
else if(newSubtreeRoot.parent.right == subtreeRoot) newSubtreeRoot.parent.right = newSubtreeRoot;
else throw new IllegalStateException();
} else {
root = newSubtreeRoot;
}
// attach D as a child of B
newSubtreeRoot.left = subtreeRoot;
subtreeRoot.parent = newSubtreeRoot;
// update height and counts of the old subtree root
byte subtreeRootLeftHeight = subtreeRoot.left != null ? subtreeRoot.left.height : 0;
byte subtreeRootRightHeight = subtreeRoot.right != null ? subtreeRoot.right.height : 0;
subtreeRoot.height = (byte)(Math.max(subtreeRootLeftHeight, subtreeRootRightHeight) + 1);
subtreeRoot.refreshCounts(!zeroQueue.contains(subtreeRoot));
// update height and counts of the new subtree root
byte newSubtreeRootLeftHeight = newSubtreeRoot.left != null ? newSubtreeRoot.left.height : 0;
byte newSubtreeRootRightHeight = newSubtreeRoot.right != null ? newSubtreeRoot.right.height : 0;
newSubtreeRoot.height = (byte)(Math.max(newSubtreeRootLeftHeight, newSubtreeRootRightHeight) + 1);
newSubtreeRoot.refreshCounts(!zeroQueue.contains(newSubtreeRoot));
return newSubtreeRoot;
}
/**
* Remove the specified element from the tree outright.
*/
public void remove(Element<T0> element) {
SimpleNode < T0> node = ( SimpleNode < T0> )element;
assert(root != null);
// delete the node by adding to the zero queue
fixCountsThruRoot(node, -1 );
zeroQueue.add(node);
drainZeroQueue();
assert(valid());
}
/**
* Remove size values at the specified index. Only values of the type
* specified in indexColors will be removed.
*
* <p>Note that if the two nodes on either side of the removed node could
* be merged, they probably will not be merged by this implementation. This
* is to simplify the implementation, but it means that when iterating a
* tree, sometimes multiple nodes of the same color and value will be
* encountered in sequence.
*/
public void remove(int index, int size) {
if(size == 0) return;
assert(index >= 0);
assert(index + size <= size( ));
assert(root != null);
// remove values from the tree
removeFromSubtree(root, index, size);
// clean up any nodes that got deleted
drainZeroQueue();
assert(valid());
}
/**
* Prune all nodes scheduled for deletion.
*/
private void drainZeroQueue() {
for(int i = 0, size = zeroQueue.size(); i < size; i++) {
SimpleNode < T0> node = zeroQueue.get(i);
if(node.right == null) {
replaceChild(node, node.left);
} else if(node.left == null) {
replaceChild(node, node.right);
} else {
node = replaceEmptyNodeWithChild(node);
}
}
zeroQueue.clear();
}
/**
* Remove at the specified index in the specified subtree. This doesn't ever
* remove any nodes of size zero, that's up to the caller to do after by
* removing all nodes in the zeroQueue from the tree.
*/
private void removeFromSubtree( SimpleNode < T0> node, int index, int size) {
while(size > 0) {
assert(node != null);
assert(index >= 0);
// figure out the layout of this node
SimpleNode < T0> nodeLeft = node.left;
int leftSize = nodeLeft != null ? nodeLeft. count1 : 0;
// delete on the left first
if(index < leftSize) {
// we can only remove part of our requirement on the left, so do
// that part recursively
if(index + size > leftSize) {
int toRemove = leftSize - index;
removeFromSubtree(nodeLeft, index, toRemove);
size -= toRemove;
leftSize -= toRemove;
// we can do our full delete on the left side
} else {
node = nodeLeft;
continue;
}
}
assert(index >= leftSize);
// delete in the centre
int rightStartIndex = leftSize + 1 ;
if(index < rightStartIndex) {
int toRemove = Math.min(rightStartIndex - index, size);
// decrement the appropriate counts all the way up
size -= toRemove;
rightStartIndex -= toRemove;
fixCountsThruRoot(node, -toRemove);
if( true ) {
zeroQueue.add(node);
}
if(size == 0) return;
}
assert(index >= rightStartIndex);
// delete on the right last
index -= rightStartIndex;
node = node.right;
}
}
/**
* Replace the specified node with the specified replacement. This does the
* replacement, then walks up the tree to ensure heights are correct, so
* the replacement node should have its height set first before this method
* is called.
*/
private void replaceChild( SimpleNode < T0> node, SimpleNode < T0> replacement) {
SimpleNode < T0> nodeParent = node.parent;
// replace the root
if(nodeParent == null) {
assert(node == root);
root = replacement;
// replace on the left
} else if(nodeParent.left == node) {
nodeParent.left = replacement;
// replace on the right
} else if(nodeParent.right == node) {
nodeParent.right = replacement;
}
// update the replacement's parent
if(replacement != null) {
replacement.parent = nodeParent;
}
// the height has changed, update that up the tree
fixHeightPostChange(nodeParent, true);
}
/**
* Replace the specified node with another node deeper in the tree. This
* is necessary to maintain treeness through deletes.
*
* <p>This implementation finds the largest node in the left subtree,
* removes it, and puts it in the specified node's place.
*
* @return the replacement node
*/
private SimpleNode < T0> replaceEmptyNodeWithChild( SimpleNode < T0> toReplace) {
assert(toReplace.left != null);
assert(toReplace.right != null);
// find the rightmost child on the leftside
SimpleNode < T0> replacement = toReplace.left;
while(replacement.right != null) {
replacement = replacement.right;
}
assert(replacement.right == null);
// remove that node from the tree
fixCountsThruRoot(replacement, -1 );
replaceChild(replacement, replacement.left);
// update the tree structure to point to the replacement
replacement.left = toReplace.left;
if(replacement.left != null) replacement.left.parent = replacement;
replacement.right = toReplace.right;
if(replacement.right != null) replacement.right.parent = replacement;
replacement.height = toReplace.height;
replacement.refreshCounts(!zeroQueue.contains(replacement));
replaceChild(toReplace, replacement);
fixCountsThruRoot(replacement.parent, 1 );
return replacement;
}
/**
* Replace all values at the specified index with the specified new value.
*
* <p>Currently this uses a naive implementation of remove then add. If
* it proves desirable, it may be worthwhile to optimize this implementation
* with one that performs the remove and insert simultaneously, to save
* on tree navigation.
*
* @return the element that was updated. This is non-null unless the size
* parameter is 0, in which case the result is always <code>null</code>.
*/
public Element<T0> set(int index, T0 value, int size) {
remove(index, size);
return add(index, value, size);
}
/**
* Remove all nodes from the tree. Note that this is much faster than calling
* remove on all elements, since the structure can be discarded instead of
* managed during the removal.
*/
public void clear() {
root = null;
}
/**
* Get the index of the specified element, counting only the colors
* specified.
*
* <p>This method is an hotspot, so its crucial that it run as efficiently
* as possible.
*/
public int indexOfNode(Element<T0> element, byte colorsOut) {
SimpleNode < T0> node = ( SimpleNode < T0> )element;
// count all elements left of this node
int index = node.left != null ? node.left. count1 : 0;
// add all elements on the left, all the way to the root
for( ; node.parent != null; node = node.parent) {
if(node.parent.right == node) {
index += node.parent.left != null ? node.parent.left. count1 : 0;
index += 1 ;
}
}
return index;
}
/**
* Find the index of the specified element
*
* @param firstIndex true to return the index of the first occurrence of the
* specified element, or false for the last index.
* @param simulated true to return an index value even if the element is not
* found. Otherwise -1 is returned.
* @return an index, or -1 if simulated is false and there exists no
* element x in this tree such that
* <code>SimpleTree.getComparator().compare(x, element) == 0</code>.
*/
public int indexOfValue(T0 element, boolean firstIndex, boolean simulated, byte colorsOut) {
int result = 0;
boolean found = false;
// go deep, looking for our node of interest
SimpleNode < T0> node = root;
while(true) {
if(node == null) {
if(found && !firstIndex) result--;
if(found || simulated) return result;
else return -1;
}
// figure out if the value is left, center or right
int comparison = comparator.compare(element, node.get());
// recurse on the left
if(comparison < 0) {
node = node.left;
continue;
}
SimpleNode < T0> nodeLeft = node.left;
// the result is in the centre
if(comparison == 0) {
found = true;
// recurse deeper on the left, looking for the first left match
if(firstIndex) {
node = nodeLeft;
continue;
}
}
// recurse on the right, increment result by left size and center size
result += nodeLeft != null ? nodeLeft. count1 : 0;
result += 1 ;
node = node.right;
}
}
/**
* Convert one index into another.
*/
public int convertIndexColor(int index, byte indexColors, byte colorsOut) {
if(root == null) {
if(index == 0) return 0;
else throw new IndexOutOfBoundsException();
}
int result = 0;
// go deep, looking for our node of interest
SimpleNode < T0> node = root;
while(true) {
assert(node != null);
assert(index >= 0);
// figure out the layout of this node
SimpleNode < T0> nodeLeft = node.left;
int leftSize = nodeLeft != null ? nodeLeft. count1 : 0;
// recurse on the left
if(index < leftSize) {
node = nodeLeft;
continue;
// increment by the count on the left
} else {
if(nodeLeft != null) result += nodeLeft. count1 ;
index -= leftSize;
}
// the result is in the centre
int size = 1 ;
if(index < size) {
// we're on a node of the same color, return the adjusted index
if( true ) {
result += index;
// we're on a node of a different color, return the previous node of the requested color
} else {
result -= 1;
}
return result;
// increment by the count in the centre
} else {
result += 1 ;
index -= size;
}
// the result is on the right
node = node.right;
}
}
/**
* The size of the tree for the specified colors.
*/
public int size( ) {
if(root == null) return 0;
else return root. count1 ;
}
/**
* Print this tree as a list of values.
*/
@Override
public String toString() {
if(root == null) return "";
return root.toString( );
}
/**
* Print this tree as a list of colors, removing all hierarchy.
*/
/**
* Find the next node in the tree, working from left to right.
*/
public static < T0> SimpleNode < T0> next( SimpleNode < T0> node) {
// if this node has a right subtree, it's the leftmost node in that subtree
if(node.right != null) {
SimpleNode < T0> child = node.right;
while(child.left != null) {
child = child.left;
}
return child;
// otherwise its the nearest ancestor where I'm in the left subtree
} else {
SimpleNode < T0> ancestor = node;
while(ancestor.parent != null && ancestor.parent.right == ancestor) {
ancestor = ancestor.parent;
}
return ancestor.parent;
}
}
/**
* Find the previous node in the tree, working from right to left.
*/
public static < T0> SimpleNode < T0> previous( SimpleNode < T0> node) {
// if this node has a left subtree, it's the rightmost node in that subtree
if(node.left != null) {
SimpleNode < T0> child = node.left;
while(child.right != null) {
child = child.right;
}
return child;
// otherwise its the nearest ancestor where I'm in the right subtree
} else {
SimpleNode < T0> ancestor = node;
while(ancestor.parent != null && ancestor.parent.left == ancestor) {
ancestor = ancestor.parent;
}
return ancestor.parent;
}
}
/**
* Find the leftmost child in this subtree.
*/
SimpleNode < T0> firstNode() {
if(root == null) return null;
SimpleNode < T0> result = root;
while(result.left != null) {
result = result.left;
}
return result;
}
/**
* @return true if this tree is structurally valid
*/
private boolean valid() {
// walk through all nodes in the tree, looking for something invalid
for( SimpleNode < T0> node = firstNode(); node != null; node = next(node)) {
// sizes (counts) are valid
int originalCount1 = node.count1;
node.refreshCounts(!zeroQueue.contains(node));
assert(originalCount1 == node.count1) : "Incorrect count 0 on node: \n" + node + "\n Expected " + node.count1 + " but was " + originalCount1;
// heights are valid
int leftHeight = node.left != null ? node.left.height : 0;
int rightHeight = node.right != null ? node.right.height : 0;
assert(Math.max(leftHeight, rightHeight) + 1 == node.height);
// left child's parent is this
assert(node.left == null || node.left.parent == node);
// right child's parent is this
assert(node.right == null || node.right.parent == node);
// tree is AVL
assert(Math.abs(leftHeight - rightHeight) < 2) : "Subtree is not AVL: \n" + node;
}
// we're valid
return true;
}
/**
* Convert the specified color value (such as 1, 2, 4, 8, 16 etc.) into an
* index value (such as 0, 1, 2, 3, 4 etc. ).
*/
static final int colorAsIndex(byte color) {
switch(color) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
case 16: return 4;
case 32: return 5;
case 64: return 6;
}
throw new IllegalArgumentException();
}
}
/*[ END_M4_JAVA ]*/
|