File: gnatcoll-gmp-integers.ads

package info (click to toggle)
libgnatcoll-bindings 25.0.0-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 2,412 kB
  • sloc: ada: 18,696; python: 1,597; ansic: 1,422; cpp: 581; makefile: 147; sh: 114
file content (344 lines) | stat: -rw-r--r-- 12,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
------------------------------------------------------------------------------
--                             G N A T C O L L                              --
--                                                                          --
--                     Copyright (C) 2009-2023, AdaCore                     --
--                                                                          --
-- This library is free software;  you can redistribute it and/or modify it --
-- under terms of the  GNU General Public License  as published by the Free --
-- Software  Foundation;  either version 3,  or (at your  option) any later --
-- version. This library is distributed in the hope that it will be useful, --
-- but WITHOUT ANY WARRANTY;  without even the implied warranty of MERCHAN- --
-- TABILITY or FITNESS FOR A PARTICULAR PURPOSE.                            --
--                                                                          --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception,   --
-- version 3.1, as published by the Free Software Foundation.               --
--                                                                          --
-- You should have received a copy of the GNU General Public License and    --
-- a copy of the GCC Runtime Library Exception along with this program;     --
-- see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see    --
-- <http://www.gnu.org/licenses/>.                                          --
--                                                                          --
------------------------------------------------------------------------------

--  This package defines an arbitrary precision integer type based on the
--  underlying GNU Multiple Precision library. The name of the type is
--  "Big_Integer."
--
--  Most Ada operations and operators are supported for type Big_Integer,
--  except that the type is limited private in order to enforce the underlying
--  semantics required by the library implementation. Assignment is performed
--  via the Set routines, and the equality operator is explicitly defined.
--
--  Most of the Ada routines are direct calls to the underlying C routines,
--  except where the Ada semantics differ. The routines all have pragma Inline
--  applied so that no additional overhead is incurred over that of a direct
--  call to the C routine (when the body consists of only such a call).
--
--  Note that using the operators returning Big_Integer objects will result in
--  temporaries, except when used as the initial value in object declarations.
--  These temporaries are automatically initialized when created but will thus
--  incur some overhead. Procedural versions of the arithmetic operators are
--  therefore included, matching those of the underlying GMP library in C
--  (except in name), which avoid temporaries and operate directly on the
--  operands.

with GNATCOLL.GMP.Lib;
with Ada.Finalization;

package GNATCOLL.GMP.Integers is

   pragma Preelaborate;

   type Big_Integer is tagged limited private;
   --  The type is limited because clients should not use predefined
   --  assignment; nor should they use predefined equality. This matches the
   --  semantics of the underlying GMP library in C. For assignment, use the
   --  Set routines. The equality operator is explicitly redefined.

   --  The underlying C version of the GMP requires the user to manually
   --  initialize the arbitrary precision integer objects (i.e., those of type
   --  mpz_t). Likewise, users are expected to clear these objects to reclaim
   --  the memory allocated. Initialization and clearing are performed
   --  automatically in this Ada version.

   Failure : exception;

   --  Assignment

   procedure Set
     (This : out Big_Integer;
      To   : String;
      Base : Int := 10);
   --  Set the value of This from To, a string containing a number expressed in
   --  base Base. White space is allowed in the string and is simply ignored.
   --
   --  The value of Base may vary from 2 to 62. For bases up to 36, case is
   --  ignored; upper-case and lower-case letters have the same value. For
   --  bases 37 to 62, upper-case letter represent the usual 10..35 while
   --  lower-case letter represent 36..61.
   --
   --  Raises Failure if the entire string To is not a valid number in base
   --  Base. Note that a leading "+" is not valid, although a leading "-"
   --  denotes a negative integer.

   function Make (This : String;  Base : Int := 10) return Big_Integer;
   --  Constructs a Big_Integer from This, using the same rules as procedure
   --  Set above.

   procedure Set (This : out Big_Integer;  To : Big_Integer);
   --  Set the value of This from To.

   procedure Set (This : out Big_Integer;  To : Long);
   --  Set the value of This from To.

   procedure Set_UL (This : out Big_Integer;  To : Unsigned_Long);
   --  Set the value of This from To.

   procedure Set
     (This : out Big_Integer;
      To   : access constant GNATCOLL.GMP.Lib.mpz_t);
   --  Set the value of This from To.

   pragma Inline (Set);
   pragma Inline (Set_UL);

   --  Relationals

   function "=" (Left : Big_Integer;  Right : Big_Integer) return Boolean;
   function "=" (Left : Big_Integer;  Right : Long)        return Boolean;
   function "=" (Left : Long;         Right : Big_Integer) return Boolean;

   function ">" (Left : Big_Integer;  Right : Big_Integer) return Boolean;
   function ">" (Left : Big_Integer;  Right : Long)        return Boolean;
   function ">" (Left : Long;         Right : Big_Integer) return Boolean;

   function "<" (Left : Big_Integer;  Right : Big_Integer) return Boolean;
   function "<" (Left : Big_Integer;  Right : Long)        return Boolean;
   function "<" (Left : Long;         Right : Big_Integer) return Boolean;

   function ">=" (Left : Big_Integer;  Right : Big_Integer) return Boolean;
   function ">=" (Left : Big_Integer;  Right : Long)        return Boolean;
   function ">=" (Left : Long;         Right : Big_Integer) return Boolean;

   function "<=" (Left : Big_Integer;  Right : Big_Integer) return Boolean;
   function "<=" (Left : Big_Integer;  Right : Long)        return Boolean;
   function "<=" (Left : Long;         Right : Big_Integer) return Boolean;

   pragma Inline ("=");
   pragma Inline (">");
   pragma Inline ("<");
   pragma Inline (">=");
   pragma Inline ("<=");

   --  Addition

   procedure Add (To : in out Big_Integer;  This : Unsigned_Long);
   procedure Add (To : in out Big_Integer;  This : Big_Integer);

   procedure Add (Result : out Big_Integer;  Op1, Op2 : Big_Integer);
   --  Result := Op1 + Op2;
   --  No temporaries required.

   function "+" (Left, Right : Big_Integer)
      return Big_Integer;

   function "+" (Left : Big_Integer; Right : Unsigned_Long)
      return Big_Integer;

   function "+" (Left : Unsigned_Long; Right : Big_Integer)
      return Big_Integer;

   pragma Inline (Add);
   pragma Inline ("+");

   --  Subtraction

   procedure Subtract (From : in out Big_Integer;  This : Unsigned_Long);
   procedure Subtract (From : in out Big_Integer;  This : Big_Integer);

   procedure Subtract (Result : out Big_Integer;  Op1, Op2 : Big_Integer);
   --  Result := Op1 - Op2;
   --  No temporaries required.

   function "-" (Left, Right : Big_Integer)
      return Big_Integer;

   function "-" (Left : Big_Integer;  Right : Unsigned_Long)
      return Big_Integer;

   function "-" (Left : Unsigned_Long; Right : Big_Integer)
      return Big_Integer;

   pragma Inline (Subtract);
   pragma Inline ("-");

   --  Unary

   function "-" (Left : Big_Integer) return Big_Integer;

   procedure Negate (This : in out Big_Integer);

   pragma Inline ("-");
   pragma Inline (Negate);

   --  Multiplication

   procedure Multiply (This : in out Big_Integer;  By : Long);
   procedure Multiply (This : in out Big_Integer;  By : Big_Integer);

   procedure Multiply (Result : out Big_Integer;  Op1, Op2 : Big_Integer);
   --  Result := Op1 * Op2;
   --  No temporaries required.

   function "*" (Left : Big_Integer;  Right : Big_Integer)
      return Big_Integer;

   function "*" (Left : Long;  Right : Big_Integer)
      return Big_Integer;

   function "*" (Left : Big_Integer;  Right : Long)
      return Big_Integer;

   pragma Inline (Multiply);
   pragma Inline ("*");

   --  Division

   --  The Divide, "/" and "rem" subprograms below implement the "truncate"
   --  division. See the other functions after them for the "ceil" and
   --  "truncate" division.

   procedure Divide (Q : in out Big_Integer;
                     N : Big_Integer;
                     D : Unsigned_Long);

   procedure Divide (Q : in out Big_Integer;
                     N : Big_Integer;
                     D : Big_Integer);

   function "/" (Left, Right : Big_Integer) return Big_Integer;

   function "/" (Left : Big_Integer;  Right : Unsigned_Long)
      return Big_Integer;

   pragma Inline (Divide);
   pragma Inline ("/");

   function "mod" (Left : Big_Integer; Right : Big_Integer)
      return Big_Integer;

   function "mod" (Left : Big_Integer; Right : Long)
      return Big_Integer;

   procedure Get_Mod (Result : out Big_Integer;  N, D : Big_Integer);

   pragma Inline ("mod");
   pragma Inline (Get_Mod);

   function "rem" (Left : Big_Integer; Right : Big_Integer)
      return Big_Integer;

   function "rem" (Left : Big_Integer; Right : Unsigned_Long)
      return Big_Integer;

   procedure Get_Rem (Result : out Big_Integer;  N, D : Big_Integer);

   pragma Inline ("rem");
   pragma Inline (Get_Rem);

   function Truncate_Divide
     (N, D : Big_Integer) return Big_Integer renames "/";
   function Truncate_Remainder
     (N, D : Big_Integer) return Big_Integer renames "rem";

   function Floor_Divide (N, D : Big_Integer) return Big_Integer;
   function Floor_Remainder (N, D : Big_Integer) return Big_Integer;

   function Ceil_Divide (N, D : Big_Integer) return Big_Integer;
   function Ceil_Remainder (N, D : Big_Integer) return Big_Integer;

   pragma Inline (Floor_Divide);
   pragma Inline (Floor_Remainder);
   pragma Inline (Ceil_Divide);
   pragma Inline (Ceil_Remainder);

   --  Logical and Bit Manipulation

   function "and" (Left, Right : Big_Integer) return Big_Integer;
   pragma Inline ("and");

   function "or" (Left, Right : Big_Integer) return Big_Integer;
   pragma Inline ("or");

   function "xor" (Left, Right : Big_Integer) return Big_Integer;
   pragma Inline ("xor");

   function "not" (This : Big_Integer) return Big_Integer;
   pragma Inline ("not");

   --  Highest Precedence Operators

   function "**"(Left : Big_Integer; Right : Unsigned_Long)
      return Big_Integer;

   procedure Raise_To_N (This : in out Big_Integer; N : Unsigned_Long);

   function "abs" (Left : Big_Integer) return Big_Integer;

   procedure Get_Abs (Result : out Big_Integer;  From : Big_Integer);

   pragma Inline ("**");
   pragma Inline (Raise_To_N);
   pragma Inline ("abs");
   pragma Inline (Get_Abs);

   --  Miscellaneous functionality

   function Image (This : Big_Integer; Base : Integer := 10) return String;
   --  Returns This as a string of digits in base Base.  The base argument
   --  may vary from 2 to 62 or from -2 to -36.
   --
   --  Does not include a leading blank if This is >= 0.
   --
   --  For Base in the range 2..36, digits and lower-case letters are
   --  used; for -2..-36, digits and upper-case letters are used; for
   --  37..62, digits, upper-case letters, and lower-case letters (in
   --  that significance order) are used.

   function As_mpz_t (This : Big_Integer)
      return access constant GNATCOLL.GMP.Lib.mpz_t;
   --  This function is useful for passing Big_Integer values to routines from
   --  gmplib that do not have an Ada binding defined by this package. In that
   --  case the user will define the binding but will not be able to pass
   --  Big_Integer objects as parameters to their routine. This function
   --  provides the required visibility to the internal mpz_t component of a
   --  Big_Integer object. For example, the user might do the following:
   --
   --    function mpz_probab_prime_p (this : access constant mpz_t; x : Int)
   --       return Int;
   --    pragma Import (C, mpz_probab_prime_p, "__gmpz_probab_prime_p");
   --
   --    N : Big_Integer;
   --    Result : Int;
   --    ...
   --    Result := mpz_probab_prime_p (As_mpz_t (N), 5);

   pragma Inline (As_mpz_t);

   function Sign (This : Big_Integer) return Integer;
   --  Returns +1 if This > 0, 0 if This = 0, and -1 if This < 0.

   pragma Inline (Sign);

private

   type Big_Integer is new Ada.Finalization.Limited_Controlled with
      record
         Value : aliased GNATCOLL.GMP.Lib.mpz_t;
      end record;

   procedure Initialize (This : in out Big_Integer);
   procedure Finalize   (This : in out Big_Integer);

end GNATCOLL.GMP.Integers;