1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
|
import argparse
import json
import os
import sys
import warnings
from goby.SequenceSegmentInformation import SequenceSegmentInformationGenerator
from goby.pyjavaproperties import Properties
import numpy as np
def get_metadata_value(base):
# Metadata value 0: ref
# Metadata value 1: SNP
# Metadata value 2: indel
if not base.isVariant and not base.hasTrueIndel:
return 0
elif base.isVariant and not base.hasTrueIndel:
return 1
elif base.hasTrueIndel:
return 2
else:
raise Exception("Invalid isVariant {} and hasTrueIndel {} combination for a base".format(base.isVariant,
base.hasTrueIndel))
def vectorize_segment_info(segment_info, max_base_count, max_feature_count, max_label_count, padding="pre"):
# Only look at first segment in sample for now
sample = segment_info.sample[0]
feature_array = []
label_array = []
metadata_array = []
ref_array = []
location_array = []
for base in sample.base:
feature_array.append(np.pad(np.array(list(base.features)), (0, max_feature_count - len(base.features)),
mode='constant'))
# Reserve label index 0 for padding/masking timesteps
labels_to_append = [0] + list(base.labels)
label_array.append(np.pad(np.array(labels_to_append),
(0, max_label_count - len(labels_to_append)),
mode='constant'))
metadata_array.append(get_metadata_value(base))
ref_array.append(base.referenceAllele)
location_array.append(base.location)
amount_to_pad = max(0, max_base_count - len(sample.base))
timestep_padding = (amount_to_pad, 0) if padding == "pre" else (0, amount_to_pad)
padding_shape = (timestep_padding, (0, 0))
feature_array = np.pad(np.array(feature_array), padding_shape, mode='constant')
label_array = np.pad(np.array(label_array), padding_shape, mode='constant')
metadata_array = np.pad(np.array(metadata_array), timestep_padding, mode='constant')
ref_array = np.pad(np.array(ref_array), timestep_padding, mode='constant')
location_array = np.pad(np.array(location_array), timestep_padding, mode='constant')
if max_base_count < len(sample.base):
if padding == "post":
feature_array = feature_array[:max_base_count, :]
label_array = label_array[:max_base_count, :]
metadata_array = metadata_array[:max_base_count]
ref_array = ref_array[:max_base_count]
location_array = location_array[:max_base_count]
else:
start_base = feature_array.shape[1] - max_base_count
feature_array = feature_array[start_base:, :]
label_array = label_array[start_base:, :]
metadata_array = metadata_array[start_base:]
ref_array = ref_array[start_base:]
location_array = location_array[start_base:]
return feature_array, label_array, metadata_array, ref_array, location_array
def minimal_vectorize_segment(segment_info, padding="pre"):
num_bases = len(segment_info.sample[0].base)
# Add 1 to labels because 0 reserved for padding/masking
num_features_set, num_labels_set = map(frozenset,
zip(*[(len(base.features), len(base.labels) + 1)
for base in segment_info.sample[0].base]))
feature_mismatch = len(num_features_set) > 1
label_mismatch = len(num_labels_set) > 1
num_features = max(num_features_set)
num_labels = max(num_labels_set)
return vectorize_segment_info(segment_info, num_bases, num_features, num_labels,
padding), feature_mismatch, label_mismatch
def vectorize_by_mini_batch(segment_info_generator, mini_batch_size, num_segments, max_base_count, padding="pre",
limit=None):
segments_processed_in_batch = 0
segments_processed_total = 0
feature_mismatch = False
label_mismatch = False
max_bases_mini_batch = -sys.maxsize
max_features_mini_batch = -sys.maxsize
max_labels_mini_batch = -sys.maxsize
mini_batch_segment_data = []
for segment_info in segment_info_generator:
if limit is None or segments_processed_total < limit:
segments_processed_in_batch += 1
segments_processed_total += 1
for base_idx in range(len(segment_info.sample[0].base)):
if len(segment_info.sample[0].base[base_idx].features) == 0:
continue
if len(segment_info.sample) == 0:
continue
if len(segment_info.sample[0].base) == 0:
continue
segment_info_data, segment_feature_mismatch, segment_label_mismatch = minimal_vectorize_segment(
segment_info, padding)
segment_info_chromosome = [str(segment_info.start_position.reference_id)]
segment_input, segment_label, _, _, _ = segment_info_data
feature_mismatch |= segment_feature_mismatch
label_mismatch |= segment_label_mismatch
segment_num_bases, segment_num_features = segment_input.shape
_, segment_num_labels = segment_label.shape
max_bases_mini_batch = max(max_bases_mini_batch, segment_num_bases)
max_features_mini_batch = max(max_features_mini_batch, segment_num_features)
max_labels_mini_batch = max(max_labels_mini_batch, segment_num_labels)
mini_batch_segment_data.append((segment_info_data, segment_info_chromosome))
if ((segments_processed_in_batch == mini_batch_size)
or (segments_processed_total == num_segments)
or (limit is not None and segments_processed_total == limit)):
mini_batch_input_ndarray = []
mini_batch_label_ndarray = []
mini_batch_metadata_ndarray = []
mini_batch_ref_ndarray = []
mini_batch_location_ndarray = []
mini_batch_chromosome_ndarray = []
for segment_data_batch, segment_chromosome_batch in mini_batch_segment_data:
(segment_input_batch, segment_label_batch, segment_metadata_batch,
segment_ref_batch, segment_location_batch) = segment_data_batch
segment_num_bases_batch, segment_num_features_batch = segment_input_batch.shape
_, segment_num_labels_batch = segment_label_batch.shape
# Prepad timesteps, postpad features/labels (if there's a shape mismatch)
num_base_diff = max_bases_mini_batch - segment_num_bases_batch
timestep_padding = (num_base_diff, 0) if padding == "pre" else (0, num_base_diff)
mini_batch_input_ndarray.append(np.pad(
segment_input_batch,
pad_width=(timestep_padding, (0, max_features_mini_batch - segment_num_features_batch)),
mode='constant'))
segment_label_ndarray = np.pad(
segment_label_batch,
pad_width=(timestep_padding, (0, max_labels_mini_batch - segment_num_labels_batch)),
mode='constant')
if padding == "post":
segment_label_ndarray[segment_num_bases_batch:, 0] = 1.
else:
segment_label_ndarray[:segment_num_bases_batch, 0] = 1.
mini_batch_label_ndarray.append(segment_label_ndarray)
mini_batch_metadata_ndarray.append(np.pad(
segment_metadata_batch,
pad_width=timestep_padding,
mode='constant'))
mini_batch_ref_ndarray.append(np.pad(
segment_ref_batch,
pad_width=timestep_padding,
mode='constant'))
mini_batch_location_ndarray.append(np.pad(
segment_location_batch,
pad_width=timestep_padding,
mode='constant'))
mini_batch_chromosome_ndarray.append(segment_chromosome_batch)
mini_batch_input_ndarray = np.array(mini_batch_input_ndarray)
mini_batch_label_ndarray = np.array(mini_batch_label_ndarray)
mini_batch_metadata_ndarray = np.array(mini_batch_metadata_ndarray)
mini_batch_ref_ndarray = np.array(mini_batch_ref_ndarray)
mini_batch_chromosome_ndarray = np.array(mini_batch_chromosome_ndarray)
mini_batch_location_ndarray = np.array(mini_batch_location_ndarray)
if max_base_count < mini_batch_input_ndarray.shape[1]:
if padding == "post":
mini_batch_input_ndarray = mini_batch_input_ndarray[:, :max_base_count, :]
mini_batch_label_ndarray = mini_batch_label_ndarray[:, :max_base_count, :]
mini_batch_metadata_ndarray = mini_batch_metadata_ndarray[:, :max_base_count]
mini_batch_ref_ndarray = mini_batch_ref_ndarray[:, :max_base_count]
mini_batch_location_ndarray = mini_batch_location_ndarray[:, :max_base_count]
else:
start_base = mini_batch_input_ndarray.shape[1] - max_base_count
mini_batch_input_ndarray = mini_batch_input_ndarray[:, start_base:, :]
mini_batch_label_ndarray = mini_batch_label_ndarray[:, start_base:, :]
mini_batch_metadata_ndarray = mini_batch_metadata_ndarray[:, start_base:]
mini_batch_ref_ndarray = mini_batch_ref_ndarray[:, start_base:]
mini_batch_location_ndarray = mini_batch_location_ndarray[:, start_base:]
mini_batch_data = (mini_batch_input_ndarray, mini_batch_label_ndarray,
mini_batch_metadata_ndarray, mini_batch_ref_ndarray,
mini_batch_chromosome_ndarray, mini_batch_location_ndarray)
yield mini_batch_data, feature_mismatch, label_mismatch
segments_processed_in_batch = 0
mini_batch_segment_data = []
max_bases_mini_batch = -sys.maxsize
max_features_mini_batch = -sys.maxsize
max_labels_mini_batch = -sys.maxsize
if segments_processed_total == limit:
break
def write_mini_batch_data(batch_input_to_write, batch_label_to_write, batch_metadata_to_write, batch_ref_to_write,
batch_chromosome_to_write, batch_location_to_write, output_path, compress):
save_fn = np.savez_compressed if compress else np.savez
save_fn(output_path, input=batch_input_to_write, label=batch_label_to_write, metadata=batch_metadata_to_write,
ref=batch_ref_to_write, chromosome=batch_chromosome_to_write, location=batch_location_to_write)
def main(args):
os.makedirs(args.output_dir, exist_ok=True)
with open("{}p".format(args.input), "r") as input_ssip:
input_properties = Properties()
input_properties.load(input_ssip)
max_base_count = int(input_properties.getProperty("maxNumOfBases"))
max_feature_count = int(input_properties.getProperty("maxNumOfFeatures"))
max_label_count = int(input_properties.getProperty("maxNumOfLabels")) + 1
num_segments = int(input_properties.getProperty("numSegments"))
output_path_and_prefix = os.path.join(args.output_dir, args.prefix)
feature_mismatch = False
label_mismatch = False
num_segments_in_last_data_set = 0
batches_written = 0
num_segments_written = 0
for batch_idx, (batch_data_set, batch_feature_mismatch, batch_label_mismatch) in enumerate(vectorize_by_mini_batch(
SequenceSegmentInformationGenerator(args.input), args.mini_batch_size, num_segments, max_base_count,
args.padding, args.limit)):
batch_input, batch_label, batch_metadata, batch_ref, batch_chromosome, batch_location = batch_data_set
num_segments_written_in_batch = batch_input.shape[0]
num_segments_written += num_segments_written_in_batch
num_segments_in_last_data_set = num_segments_written_in_batch
feature_mismatch |= batch_feature_mismatch
label_mismatch |= batch_label_mismatch
output_full_path = "{}_{}.npz".format(output_path_and_prefix, batch_idx)
write_mini_batch_data(batch_input, batch_label, batch_metadata, batch_ref, batch_chromosome,
batch_location, output_full_path, args.compress)
batches_written += 1
output_json_path = os.path.join(args.output_dir, "properties.json")
properties = {
"max_base_count": max_base_count,
"max_feature_count": max_feature_count,
"max_label_count": max_label_count,
"num_segments_in_last_data_set": num_segments_in_last_data_set,
"mini_batch_size": args.mini_batch_size,
"num_segments_written": num_segments_written,
"total_batches_written": batches_written,
"batch_prefix": args.prefix,
"padding": args.padding,
"genotype.segment.label_plus_one.0": "<PAD>",
}
for label in range(1, max_label_count):
label_name_in = "genotype.segment.label.{}".format(label - 1)
label_name_out = "genotype.segment.label_plus_one.{}".format(label)
properties[label_name_out] = input_properties.getProperty(label_name_in)
with open(output_json_path, "w") as output_json_file:
json.dump(properties, output_json_file, indent=2)
if feature_mismatch:
warnings.warn("Mismatched number of features in each base; training behavior will be undefined")
if label_mismatch:
warnings.warn("Mismatched number of labels in each base; training behavior will be undefined")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Generate datasets from SSI files")
parser.add_argument("-i", "--input", type=str, required=True, help="SSI file with input segments.")
parser.add_argument("-o", "--output-dir", type=str, required=True,
help="Parent directory to put generated numpy files.")
parser.add_argument("-p", "--prefix", type=str, required=True,
help="Prefix to prepend all generated files with.")
parser.add_argument("-m", "--mini-batch-size", type=int, default=1,
help="Number of segments to put in each numpy array.")
parser.add_argument("--compress", dest="compress", action="store_true",
help="When set, compress npz files that are generated.")
parser.add_argument("--padding", type=str, choices=["pre", "post"], default="post",
help="Whether to pad timesteps before or after sequences.")
parser.add_argument("--limit", type=int, help="If present, only generate --limit segments.")
parser_args = parser.parse_args()
main(parser_args)
|