1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
import argparse
import csv
import os
from collections import namedtuple
from keras.models import load_model
from dl.SegmentGenotypingClassesFunctions import get_properties_json, BatchNumpyFileSequence
import numpy as np
vcf_header = ("##fileformat=VCFv4.1\n"
"##GobyPython={}\n"
"##modelPath={}\n"
"##modelPrefix={}\n"
"##datasetPath={}\n"
"##datasetPrefix={}\n"
"##indelsTrimmed={}\n"
"##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n"
"##FORMAT=<ID=MC,Number=1,Type=String,Description=\"Model Calls.\">\n"
"##FORMAT=<ID=P,Number=1,Type=Float,Description=\"Model proability.\">\n")
VcfOutputWriter = namedtuple("VcfOutputWriter", ["vcf_writer", "bed_writer"])
VcfOutputLine = namedtuple("VcfLine", ["vcf_ref", "vcf_alts", "vcf_gt", "vcf_mc", "vcf_model_probability",
"vcf_max_len"])
class VcfLine:
# TODO: Avoid duplication b/w __init__ and clear- call __init__ from clear, call clear from __init__, other way
def __init__(self):
self.is_indel = False
self.last_base_location = 0
self.last_gap_location = 0
self.vcf_location = None
self.vcf_ref_bases = []
self.vcf_predictions = []
self.vcf_probabilities = []
self.vcf_chromosome = None
def clear(self):
self.is_indel = False
self.last_base_location = 0
self.last_gap_location = 0
self.vcf_location = None
self.vcf_ref_bases = []
self.vcf_predictions = []
self.vcf_probabilities = []
self.vcf_chromosome = None
def add_base(self, segment_ref_base, segment_prediction_base, segment_probability_base, segment_location_base,
segment_chromosome):
if self.vcf_location is None:
self.vcf_location = segment_location_base
if self.vcf_chromosome is None:
self.vcf_chromosome = segment_chromosome
else:
if self.vcf_chromosome != segment_chromosome:
raise ValueError("VCF lines should have same chromosome")
if "-" in segment_prediction_base:
self.is_indel = True
self.last_gap_location = segment_location_base
self.last_base_location = segment_location_base
self.vcf_ref_bases.append(segment_ref_base)
self.vcf_predictions.append(segment_prediction_base)
self.vcf_probabilities.append(segment_probability_base)
def is_empty(self):
return self.vcf_location is None
def need_to_flush(self, segment_next_location):
if self.is_empty():
return False
if not self.is_indel:
return self.last_base_location != segment_next_location
else:
if self.last_base_location == self.last_gap_location:
return False
else:
return self.last_base_location != segment_next_location
def _get_basename(path):
return os.path.splitext(os.path.basename(path))[0]
def _write_vcf_files(model, properties_json, test_data, **vcf_output_writers):
vcf_line = VcfLine()
for data_idx in range(len(test_data)):
if data_idx % 20 == 0:
print("Evaluating batch {} of {}...".format(data_idx, len(test_data)))
(batch_input_dict, batch_label_dict), batch_ref, batch_location, batch_chromosome = test_data[data_idx]
batch_input = batch_input_dict["model_input"]
batch_label = batch_label_dict["main_output"]
batch_predictions = model.predict_on_batch(batch_input)
for segment_in_batch_idx in range(batch_predictions.shape[0]):
segment_chromosome = batch_chromosome[segment_in_batch_idx][0]
segment_label_categorical = batch_label[segment_in_batch_idx]
segment_prediction_categorical = batch_predictions[segment_in_batch_idx]
segment_ref_with_padding = batch_ref[segment_in_batch_idx]
segment_label_with_padding = np.argmax(segment_label_categorical, axis=1)
segment_prediction_with_padding = np.argmax(segment_prediction_categorical, axis=1)
segment_model_probabilities_with_padding = np.max(segment_prediction_categorical, axis=1)
# Only use positions where label != 0, as label 0 reserved for padding
segment_label_non_padding_positions = segment_label_with_padding != 0
segment_prediction = np.extract(segment_label_non_padding_positions, segment_prediction_with_padding)
segment_model_probabilities = np.extract(segment_label_non_padding_positions,
segment_model_probabilities_with_padding)
segment_ref = np.extract(segment_label_non_padding_positions, segment_ref_with_padding)
segment_true_genotype_prediction = [
properties_json["genotype.segment.label_plus_one.{}".format(label)]
for label in segment_prediction
]
segment_locations = np.extract(segment_label_non_padding_positions,
batch_location[segment_in_batch_idx])
for base_idx in range(len(segment_ref)):
base_location = segment_locations[base_idx]
base_ref = segment_ref[base_idx]
base_prediction = segment_true_genotype_prediction[base_idx]
base_probability = segment_model_probabilities[base_idx]
if vcf_line.need_to_flush(base_location):
_write_vcf_line(vcf_line=vcf_line,
dataset_field=properties_json["batch_prefix"],
**vcf_output_writers)
vcf_line.clear()
vcf_line.add_base(segment_ref_base=base_ref,
segment_prediction_base=base_prediction,
segment_probability_base=base_probability,
segment_location_base=base_location,
segment_chromosome=segment_chromosome)
if not vcf_line.is_empty():
_write_vcf_line(vcf_line=vcf_line,
dataset_field=properties_json["batch_prefix"],
**vcf_output_writers)
vcf_line.clear()
def _generate_vcf_output_line(vcf_ref, vcf_predicted_alleles, vcf_line, trim_indels):
if trim_indels:
vcf_ref, vcf_predicted_alleles = _trim_indels(vcf_ref, vcf_predicted_alleles)
vcf_alts = list(set(filter(lambda x: x != vcf_ref, vcf_predicted_alleles)))
vcf_max_len = max(map(len, vcf_alts)) if vcf_alts else 0
vcf_max_len = max(vcf_max_len, len(vcf_ref))
vcf_possible_alleles = [vcf_ref] + vcf_alts
vcf_unique_predicted_alleles = []
for allele in vcf_predicted_alleles:
if allele not in vcf_unique_predicted_alleles:
vcf_unique_predicted_alleles.append(allele)
vcf_gt = [vcf_possible_alleles.index(allele) for allele in vcf_unique_predicted_alleles]
vcf_mc = [vcf_possible_alleles[allele_idx] for allele_idx in vcf_gt]
vcf_model_probability = np.mean(vcf_line.vcf_probabilities)
return VcfOutputLine(vcf_ref=vcf_ref, vcf_alts=vcf_alts, vcf_gt=vcf_gt, vcf_mc=vcf_mc,
vcf_model_probability=vcf_model_probability, vcf_max_len=vcf_max_len)
def _invalid_entry(formatted_ref, formatted_alts, gt):
invalid_ref = formatted_ref == "." and 0 in gt
invalid_alts = formatted_alts == "." and (1 in gt or 2 in gt)
return invalid_ref or invalid_alts
def _generate_vcf_entries(vcf_output_line, vcf_line, dataset_field):
formatted_ref = _format_alleles(vcf_output_line.vcf_ref)
formatted_alts = _format_alleles(*vcf_output_line.vcf_alts)
invalid_entry = _invalid_entry(formatted_ref, formatted_alts, vcf_output_line.vcf_gt)
vcf_entry = {
"CHROM": vcf_line.vcf_chromosome,
"POS": vcf_line.vcf_location + 1,
"ID": ".",
"REF": vcf_output_line.vcf_ref,
"ALT": formatted_alts,
"QUAL": ".",
"FILTER": ".",
"INFO": ".",
"FORMAT": "GT:MC:P",
dataset_field: "{}:{}:{}".format("/".join(map(str, vcf_output_line.vcf_gt)),
"/".join(vcf_output_line.vcf_mc),
vcf_output_line.vcf_model_probability),
}
bed_entry = {
"chrom": vcf_line.vcf_chromosome,
"start": vcf_line.vcf_location,
"end": vcf_line.vcf_location + vcf_output_line.vcf_max_len,
}
return vcf_entry, bed_entry, invalid_entry
def _write_vcf_line(vcf_line, dataset_field, regular_vcf_output_writer, original_vcf_output_writer=None,
error_vcf_output_writer=None):
vcf_ref = "".join(vcf_line.vcf_ref_bases)
vcf_predicted_alleles = ["".join(bases) for bases in list(zip(*map(list, vcf_line.vcf_predictions)))]
regular_vcf_output_line = _generate_vcf_output_line(vcf_ref, vcf_predicted_alleles, vcf_line, trim_indels=True)
regular_entry = _generate_vcf_entries(regular_vcf_output_line, vcf_line, dataset_field)
regular_vcf_entry, regular_bed_entry, invalid_entry = regular_entry
if not invalid_entry:
regular_vcf_output_writer.vcf_writer.writerow(regular_vcf_entry)
regular_vcf_output_writer.bed_writer.writerow(regular_bed_entry)
if original_vcf_output_writer is not None or error_vcf_output_writer is not None:
original_vcf_output_line = _generate_vcf_output_line(vcf_ref, vcf_predicted_alleles, vcf_line,
trim_indels=False)
original_entry = _generate_vcf_entries(original_vcf_output_line, vcf_line, dataset_field)
original_vcf_entry, original_bed_entry, _ = original_entry
if original_vcf_output_writer is not None:
if not invalid_entry:
original_vcf_output_writer.vcf_writer.writerow(original_vcf_entry)
original_vcf_output_writer.bed_writer.writerow(original_bed_entry)
else:
if error_vcf_output_writer is not None:
error_vcf_output_writer.vcf_writer.writerow(original_vcf_entry)
error_vcf_output_writer.bed_writer.writerow(original_bed_entry)
def _trim_indels(ref, predicted_alleles):
"""
Properly format indels for inclusion in VCF files
1. trim all alleles to index of last dash any allele,
IE: from: GTAC to: G--C,G-AC -> from: GTA to: G--,G-A
2. delete dashes
IE: from: GTA to: G--,G-A -> from: GTA to: G,GA
Based on FormatIndelVCF from VariationAnalysis project
:param ref: reference allele
:param predicted_alleles: list of predicted alleles
:return: ref, alts
"""
last_suffix_index = len(ref)
for suffix_index in range(len(ref) - 1, 0, -1):
ref_pred = ref[suffix_index]
found_last_suffix_index = False
for predicted_allele in predicted_alleles:
if predicted_allele[suffix_index] != ref_pred:
found_last_suffix_index = True
break
if found_last_suffix_index:
last_suffix_index = suffix_index + 1
break
ref = ref[:last_suffix_index].replace("-", "")
predicted_alleles = [predicted_allele[:last_suffix_index].replace("-", "")
for predicted_allele in predicted_alleles]
return ref, predicted_alleles
def _format_alleles(*alleles):
# Only select non-empty alts
valid_alleles = list(filter(lambda allele: allele, alleles))
if len(valid_alleles) > 0:
return ",".join(valid_alleles)
else:
return "."
def main(args):
properties_json_to_use = get_properties_json(args.testing)
model_to_use = load_model(args.model)
max_base_count = model_to_use.input_shape[1]
test_data_to_use = BatchNumpyFileSequence(args.testing, max_base_count, properties_json_to_use, array_type='vcf')
vcf_fields = ["CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT",
properties_json_to_use["batch_prefix"]]
bed_fields = ["chrom", "start", "end"]
prefix_dir = os.path.dirname(args.prefix)
if prefix_dir:
os.makedirs(prefix_dir, exist_ok=True)
prefix = os.path.splitext(os.path.basename(args.prefix))[0]
prefix = os.path.join(prefix_dir, prefix)
regular_vcf_file = open("{}.vcf".format(prefix), "w")
regular_bed_file = open("{}.bed".format(prefix), "w")
regular_vcf_file.write(vcf_header.format(args.version, args.model, _get_basename(args.model), args.testing,
properties_json_to_use["batch_prefix"], True))
regular_vcf_file.write("#{}\n".format("\t".join(vcf_fields)))
regular_vcf_writer = csv.DictWriter(regular_vcf_file, fieldnames=vcf_fields, delimiter="\t", lineterminator="\n")
regular_bed_writer = csv.DictWriter(regular_bed_file, fieldnames=bed_fields, delimiter="\t", lineterminator="\n")
regular_vcf_output_writer = VcfOutputWriter(vcf_writer=regular_vcf_writer, bed_writer=regular_bed_writer)
original_vcf_file = None
original_bed_file = None
original_vcf_output_writer = None
if args.generate_original_vcf:
original_vcf_file = open("{}_original.vcf".format(prefix), "w")
original_bed_file = open("{}_original.bed".format(prefix), "w")
original_vcf_file.write(vcf_header.format(args.version, args.model, _get_basename(args.model), args.testing,
properties_json_to_use["batch_prefix"], False))
original_vcf_file.write("#{}\n".format("\t".join(vcf_fields)))
original_vcf_writer = csv.DictWriter(original_vcf_file, fieldnames=vcf_fields, delimiter="\t",
lineterminator="\n")
original_bed_writer = csv.DictWriter(original_bed_file, fieldnames=bed_fields, delimiter="\t",
lineterminator="\n")
original_vcf_output_writer = VcfOutputWriter(vcf_writer=original_vcf_writer, bed_writer=original_bed_writer)
error_vcf_file = None
error_bed_file = None
error_vcf_output_writer = None
if args.generate_error_vcf:
error_vcf_file = open("{}_error.vcf".format(prefix), "w")
error_bed_file = open("{}_error.bed".format(prefix), "w")
error_vcf_file.write(vcf_header.format(args.version, args.model, _get_basename(args.model), args.testing,
properties_json_to_use["batch_prefix"], False))
error_vcf_file.write("#{}\n".format("\t".join(vcf_fields)))
error_vcf_writer = csv.DictWriter(error_vcf_file, fieldnames=vcf_fields, delimiter="\t",
lineterminator="\n")
error_bed_writer = csv.DictWriter(error_bed_file, fieldnames=bed_fields, delimiter="\t",
lineterminator="\n")
error_vcf_output_writer = VcfOutputWriter(vcf_writer=error_vcf_writer, bed_writer=error_bed_writer)
_write_vcf_files(model_to_use, properties_json_to_use, test_data_to_use,
regular_vcf_output_writer=regular_vcf_output_writer,
original_vcf_output_writer=original_vcf_output_writer,
error_vcf_output_writer=error_vcf_output_writer)
regular_vcf_file.close()
regular_bed_file.close()
if args.generate_original_vcf:
original_vcf_file.close()
original_bed_file.close()
if args.generate_error_vcf:
error_vcf_file.close()
error_bed_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model", type=str, required=True, help="Path to model to evaluate.")
parser.add_argument("-t", "--testing", type=str, required=True,
help="Path to test set directory that was preprocessed via GenerateDatasetsFromSSI.")
parser.add_argument("-p", "--prefix", type=str, required=True,
help="Prefix for generated VCF and BED files.")
parser.add_argument("--version", type=str, help="Version of goby being used", default="1.4.1-SNAPSHOT")
parser.add_argument("--generate-original-vcf", action="store_true", dest="generate_original_vcf",
help="If present, generate separate file at <prefix>_original.{vcf|bed} representing the "
"original calls made by the model, before any reformatting to handle indels")
parser.add_argument("--generate-error-vcf", action="store_true", dest="generate_error_vcf",
help="If present, generate seprate file at <prefix>_error.{vcf|bed} with any calls that are "
"malformed for the VCF specification.")
parser_args = parser.parse_args()
main(parser_args)
|