File: SegmentGenotypingClassesFunctions.py

package info (click to toggle)
libgoby-java 3.3.1%2Bdfsg2-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 58,108 kB
  • sloc: java: 78,105; cpp: 5,011; xml: 3,170; python: 2,108; sh: 1,575; ansic: 277; makefile: 114
file content (298 lines) | stat: -rw-r--r-- 15,110 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import csv
import json
import os
from enum import Enum

from keras.models import load_model
from keras.utils import Sequence

import numpy as np


def get_properties_json(path_to_directory):
    properties_json_path = os.path.join(path_to_directory, "properties.json")
    with open(properties_json_path, "r") as properties_json_file:
        properties_json = json.load(properties_json_file)
    return properties_json


class BatchNumpyFileSequence(Sequence):
    def __init__(self, np_batch_directory, max_base_count, properties_json=None, array_type='train'):
        if properties_json is None:
            properties_json = get_properties_json(np_batch_directory)
        self.properties_json = properties_json
        self.batch_path_and_prefix = os.path.join(np_batch_directory, self.properties_json["batch_prefix"])
        self.max_base_count = max_base_count
        if array_type not in ['train', 'vcf', 'eval']:
            self.array_type = 'train'
        else:
            self.array_type = array_type

    def __len__(self):
        return self.properties_json["total_batches_written"]

    def __getitem__(self, index):
        with np.load("{}_{}.npz".format(self.batch_path_and_prefix, index)) as batch_data_set:
            batch_input = batch_data_set["input"]
            batch_label = batch_data_set["label"]
            # Prepad timesteps, postpad features/labels (if there's a shape mismatch)
            num_base_diff = max(0, self.max_base_count - batch_input.shape[1])
            timestep_padding = (num_base_diff, 0) if self.properties_json["padding"] == "pre" else (0, num_base_diff)
            batch_input = self._pad_batch(batch_input, timestep_padding)
            batch_label = self._pad_batch(batch_label, timestep_padding)
            batch_output = ({"model_input": batch_input}, {"main_output": batch_label})
            if self.array_type == 'vcf':
                batch_ref = self._pad_batch(batch_data_set["ref"], timestep_padding, pad_3d=False)
                batch_location = self._pad_batch(batch_data_set["location"], timestep_padding, pad_3d=False)
                batch_chromosome = batch_data_set["chromosome"]
                return batch_output, batch_ref, batch_location, batch_chromosome
            elif self.array_type == 'eval':
                batch_metadata = self._pad_batch(batch_data_set["metadata"], timestep_padding, pad_3d=False)
                return batch_output, batch_metadata
            else:
                return batch_output

    def _pad_batch(self, batch_array, timestep_padding, pad_3d=True):
        pad_width = ((0, 0), timestep_padding, (0, 0)) if pad_3d else ((0, 0), timestep_padding)
        batch_array_padded = np.pad(batch_array,
                                    pad_width=pad_width,
                                    mode="constant")
        if self.max_base_count < batch_array.shape[1]:
            if self.properties_json["padding"] == "post":
                if pad_3d:
                    batch_array_padded = batch_array_padded[:, :self.max_base_count, :]
                else:
                    batch_array_padded = batch_array_padded[:, :self.max_base_count]
            else:
                start_base = batch_array.shape[1] - self.max_base_count
                if pad_3d:
                    batch_array_padded = batch_array_padded[:, start_base:, :]
                else:
                    batch_array_padded = batch_array_padded[:, start_base:]
        return batch_array_padded

    def on_epoch_end(self):
        pass


class Metadata(Enum):
    REF = 0
    SNP = 1
    INDEL = 2


class ModelEvaluator:
    def __init__(self, test_data_path, log_path, write_header, log_epochs, max_base_count=None, main_model=None):
        self.properties_json = get_properties_json(test_data_path)
        if main_model is not None:
            self.main_model = ModelEvaluator._get_model(main_model)
        else:
            self.main_model = None
        if max_base_count is None:
            if self.main_model is not None and self.main_model.input_shape[1] is not None:
                max_base_count = self.main_model.input_shape[1]
            else:
                max_base_count = self.properties_json["max_base_count"]
        self.test_data = BatchNumpyFileSequence(test_data_path, max_base_count,
                                                self.properties_json, array_type='eval')
        field_names = ["epoch"] if log_epochs else []
        field_names += ["precision_ref", "precision_snp", "precision_indel", "recall_ref", "recall_snp", "recall_indel",
                        "f1_ref", "f1_snp", "f1_indel", "accuracy_overall", "accuracy_ref", "accuracy_snp",
                        "accuracy_indel", "true_or_predicted_ref", "true_or_predicted_snp", "true_or_predicted_indel",
                        "true_ref", "true_snp", "true_indel", "predicted_ref", "predicted_snp", "predicted_indel"]
        self.log_file = open(log_path, "a")
        self.log_writer = csv.DictWriter(self.log_file, fieldnames=field_names, quoting=csv.QUOTE_NONNUMERIC,
                                         delimiter="\t", lineterminator="\n")
        if write_header:
            self.log_writer.writeheader()

    @staticmethod
    def _get_model(model):
        if type(model) == str:
            return load_model(model)
        else:
            return model

    def eval_model(self, model_to_eval=None, epoch=None):
        if self.main_model is not None:
            model = self.main_model
        elif model_to_eval is not None:
            model = ModelEvaluator._get_model(model_to_eval)
        else:
            raise Exception("No model provided to evaluator")
        # Not using predict_generator here because difficult to reconstruct order of inputs,
        # see https://github.com/fchollet/keras/issues/5048
        # Using batch_prediction rather than predicting on each sample to potentially speed up predictions
        count_true_or_predicted_ref = 0
        count_true_or_predicted_snp = 0
        count_true_or_predicted_indel = 0
        count_predicted_ref = 0
        count_predicted_snp = 0
        count_predicted_indel = 0
        count_true_ref = 0
        count_true_snp = 0
        count_true_indel = 0
        correct_overall = 0
        correct_ref = 0
        correct_snp = 0
        correct_indel = 0
        count_overall = 0
        tp_ref = 0
        tp_snp = 0
        tp_indel = 0
        fp_ref = 0
        fp_snp = 0
        fp_indel = 0
        fn_ref = 0
        fn_snp = 0
        fn_indel = 0
        for data_idx in range(len(self.test_data)):
            (batch_input_dict, batch_label_dict), batch_metadata = self.test_data[data_idx]
            batch_input = batch_input_dict["model_input"]
            batch_label = batch_label_dict["main_output"]
            # batch_predictions, _ = model.predict_on_batch(batch_input)
            batch_predictions = model.predict_on_batch(batch_input)
            for segment_in_batch_idx in range(batch_predictions.shape[0]):
                segment_label_categorical = batch_label[segment_in_batch_idx]
                segment_prediction_categorical = batch_predictions[segment_in_batch_idx]
                segment_metadata_with_padding = batch_metadata[segment_in_batch_idx]
                # segment_predicted_metadata_categorical = batch_predicted_metadata[segment_in_batch_idx]
                segment_label_with_padding = np.argmax(segment_label_categorical, axis=1)
                # Get true genotypes from these segment labels
                # Keep track of tp, fp, tn, and fn based on metadata ref, snp, indel, and calculate acc, prec, rec, F1
                segment_prediction_with_padding = np.argmax(segment_prediction_categorical, axis=1)
                # segment_predicted_metadata_with_padding = np.argmax(segment_predicted_metadata_categorical, axis=1)
                # Only use positions where label != 0, as label 0 reserved for padding
                segment_label_non_padding_positions = segment_label_with_padding != 0
                segment_label = np.extract(segment_label_non_padding_positions, segment_label_with_padding)
                segment_prediction = np.extract(segment_label_non_padding_positions, segment_prediction_with_padding)
                segment_metadata = np.extract(segment_label_non_padding_positions, segment_metadata_with_padding)
                # segment_predicted_metadata = np.extract(segment_label_non_padding_positions,
                #                                         segment_predicted_metadata_with_padding)
                # segment_true_genotype_label = [properties_json["genotype.segment.label_plus_one.{}".format(label)]
                #                                for label in segment_label]
                segment_true_genotype_prediction = [
                    self.properties_json["genotype.segment.label_plus_one.{}".format(label)]
                    for label in segment_prediction
                ]

                for base_idx in range(segment_label.shape[0]):
                    count_overall += 1
                    true_or_predicted_ref_at_base = False
                    true_or_predicted_indel_at_base = False
                    true_or_predicted_snp_at_base = False

                    base_metadata_value = segment_metadata[base_idx]
                    if base_metadata_value == 0:
                        base_metadata = Metadata.REF
                        true_or_predicted_ref_at_base = True
                        count_true_ref += 1
                    elif base_metadata_value == 1:
                        base_metadata = Metadata.SNP
                        true_or_predicted_snp_at_base = True
                        count_true_snp += 1
                    elif base_metadata_value == 2:
                        base_metadata = Metadata.INDEL
                        true_or_predicted_indel_at_base = True
                        count_true_indel += 1
                    else:
                        raise Exception("Unknown metadata value")

                    # Check if prediction is for indel, SNP or ref based on true genotype corresponding to label
                    # If it contains a "-", prediction is indel
                    # If heterozygous, prediction is SNP
                    # Otherwise, is ref
                    base_true_genotype_prediction = segment_true_genotype_prediction[base_idx]
                    if "-" in base_true_genotype_prediction:
                        base_predicted_metadata = Metadata.INDEL
                        true_or_predicted_indel_at_base = True
                        count_predicted_indel += 1
                    elif len("".join(set(base_true_genotype_prediction))) > 1:
                        base_predicted_metadata = Metadata.SNP
                        true_or_predicted_snp_at_base = True
                        count_predicted_snp += 1
                    else:
                        base_predicted_metadata = Metadata.REF
                        true_or_predicted_ref_at_base = True
                        count_predicted_ref += 1

                    if true_or_predicted_ref_at_base:
                        count_true_or_predicted_ref += 1
                    if true_or_predicted_snp_at_base:
                        count_true_or_predicted_snp += 1
                    if true_or_predicted_indel_at_base:
                        count_true_or_predicted_indel += 1

                    if segment_prediction[base_idx] == segment_label[base_idx]:
                        correct_overall += 1
                        if true_or_predicted_ref_at_base:
                            correct_ref += 1
                        if true_or_predicted_snp_at_base:
                            correct_snp += 1
                        if true_or_predicted_indel_at_base:
                            correct_indel += 1

                        if base_metadata == Metadata.REF:
                            tp_ref += 1
                        elif base_metadata == Metadata.SNP:
                            tp_snp += 1
                        elif base_metadata == Metadata.INDEL:
                            tp_indel += 1
                        else:
                            raise Exception("Unknown metadata value")
                    else:
                        if base_metadata == Metadata.REF:
                            fn_ref += 1
                        elif base_metadata == Metadata.SNP:
                            fn_snp += 1
                        elif base_metadata == Metadata.INDEL:
                            fn_indel += 1
                        else:
                            raise Exception("Unknown metadata value")

                    if base_predicted_metadata == Metadata.REF and not base_metadata == Metadata.REF:
                        fp_ref += 1
                    elif base_predicted_metadata == Metadata.SNP and not base_metadata == Metadata.SNP:
                        fp_snp += 1
                    elif base_predicted_metadata == Metadata.INDEL and not base_metadata == Metadata.INDEL:
                        fp_indel += 1

        precision_ref = np.divide(tp_ref, (tp_ref + fp_ref))
        precision_snp = np.divide(tp_snp, (tp_snp + fp_snp))
        precision_indel = np.divide(tp_indel, (tp_indel + fp_indel))

        recall_ref = np.divide(tp_ref, (tp_ref + fn_ref))
        recall_snp = np.divide(tp_snp, (tp_snp + fn_snp))
        recall_indel = np.divide(tp_indel, (tp_indel + fn_indel))

        row_dict = {
            "precision_ref": precision_ref,
            "precision_snp": precision_snp,
            "precision_indel": precision_indel,
            "recall_ref": recall_ref,
            "recall_snp": recall_snp,
            "recall_indel": recall_indel,
            "f1_ref": np.divide(2 * precision_ref * recall_ref, precision_ref + recall_ref),
            "f1_snp": np.divide(2 * precision_snp * recall_snp, precision_snp + recall_snp),
            "f1_indel": np.divide(2 * precision_indel * recall_indel, precision_indel + recall_indel),
            "accuracy_overall": np.divide(correct_overall, count_overall),
            "accuracy_ref": np.divide(correct_ref, count_true_or_predicted_ref),
            "accuracy_snp": np.divide(correct_snp, count_true_or_predicted_snp),
            "accuracy_indel": np.divide(correct_indel, count_true_or_predicted_indel),
            "true_or_predicted_ref": count_true_or_predicted_ref,
            "true_or_predicted_snp": count_true_or_predicted_snp,
            "true_or_predicted_indel": count_true_or_predicted_indel,
            "true_ref": count_true_ref,
            "true_snp": count_true_snp,
            "true_indel": count_true_indel,
            "predicted_ref": count_predicted_ref,
            "predicted_snp": count_predicted_snp,
            "predicted_indel": count_predicted_indel,
        }
        if epoch is not None:
            row_dict["epoch"] = epoch
        self.log_writer.writerow(row_dict)
        self.log_file.flush()

    def close_log(self):
        self.log_file.close()