1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
import argparse
import math
import warnings
from keras import backend
from keras.layers import regularizers
from keras.regularizers import l1_l2, l1, l2
from dl.GenerateDatasetsFromSSI import vectorize_segment_info
from dl.TrainGenotypeSSIDataset import create_model, create_callbacks
from goby.SequenceSegmentInformation import SequenceSegmentInformationGenerator, SequenceSegmentInformationStreamGenerator
from goby.pyjavaproperties import Properties
import numpy as np
import tensorflow as tf
def vectorize(segment_info_generator, max_base_count, max_feature_count, max_label_count, padding="pre"):
feature_arrays = []
label_arrays = []
for segment_info in segment_info_generator:
feature_array, label_array = vectorize_segment_info(segment_info, max_base_count, max_feature_count,
max_label_count, padding)
feature_arrays.append(feature_array)
label_arrays.append(label_array)
return np.array(feature_arrays), np.array(label_arrays)
def vectorize_generator(segment_info_generator, max_base_count, max_feature_count, max_label_count, mini_batch_size,
num_segments, padding="pre"):
feature_arrays = []
label_arrays = []
segments_processed = 0
for segment_info in segment_info_generator:
segments_processed += 1
feature_array, label_array = vectorize_segment_info(segment_info, max_base_count, max_feature_count,
max_label_count, padding)
feature_arrays.append(feature_array)
label_arrays.append(label_array)
if len(feature_arrays) == mini_batch_size or segments_processed == num_segments:
yield np.array(feature_arrays), np.array(label_arrays)
feature_arrays = []
label_arrays = []
segments_processed = 0
def main(args):
backend.set_learning_phase(1)
init = tf.global_variables_initializer()
# Show device placement:
session = (tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=args.show_mappings))
if args.tensorboard
else tf.Session(config=tf.ConfigProto(log_device_placement=args.show_mappings)))
session.run(init)
if args.platform == "cpu":
implementation = 0
cpu_or_gpu = "/cpu:0"
elif args.platform == "gpu":
implementation = 2
gpu_device = args.gpu_device
cpu_or_gpu = "/gpu:{}".format(gpu_device)
else:
raise ValueError("Platform {} not recognized".format(args.platform))
reg = None
if args.l1 is not None and args.l2 is not None:
reg = regularizers.get(l1_l2(args.l1, args.l2))
elif args.l1 is not None:
reg = regularizers.get(l1(args.l1))
elif args.l2 is not None:
reg = regularizers.get(l2(args.l2))
with open("{}p".format(args.input), "r") as input_ssip:
input_properties = Properties()
input_properties.load(input_ssip)
with open("{}p".format(args.validation), "r") as val_ssip:
val_properties = Properties()
val_properties.load(val_ssip)
input_base_count = int(input_properties.getProperty("maxNumOfBases"))
input_feature_count = int(input_properties.getProperty("maxNumOfFeatures"))
input_label_count = int(input_properties.getProperty("maxNumOfLabels"))
val_feature_count = int(val_properties.getProperty("maxNumOfFeatures"))
val_label_count = int(val_properties.getProperty("maxNumOfLabels"))
input_num_segments = int(input_properties.getProperty("numSegments"))
val_num_segments = int(val_properties.getProperty("numSegments"))
input_mini_batch_size = args.input_mini_batch_size
val_mini_batch_size = args.val_mini_batch_size
max_base_count = input_base_count
if input_feature_count != val_feature_count:
warnings.warn("Mismatch between input feature count {} and val feature count {}".format(input_feature_count,
val_feature_count))
if input_label_count != val_label_count:
warnings.warn("Mismatch between input label count {} and val label count {}".format(input_label_count,
val_label_count))
max_feature_count = max(input_feature_count, val_feature_count)
max_label_count = max(input_label_count, val_label_count)
print("Creating model and callbacks...")
model = create_model(num_layers=args.num_layers,
max_base_count=max_base_count,
max_feature_count=max_feature_count,
max_label_count=max_label_count,
use_bidirectional=args.bidirectional,
lstm_units=args.lstm_units,
implementation=implementation,
layer_type=args.layer_type,
learning_rate=args.learning_rate,
add_metadata=False,
regularizer=reg)
callbacks = create_callbacks(args.model_prefix, args.min_delta, args.tensorboard)
generator_training_modes = frozenset(["batch", "sequence", "batch-np", "sequence-np"])
if args.training_mode == "whole":
print("Vectorizing training data...")
training_input, training_label = vectorize(SequenceSegmentInformationGenerator(args.input),
max_base_count=max_base_count,
max_feature_count=max_feature_count,
max_label_count=max_label_count,
padding=args.padding)
print("Vectorizing validation data...")
val_input, val_label = vectorize(SequenceSegmentInformationGenerator(args.validation),
max_base_count=max_base_count,
max_feature_count=max_feature_count,
max_label_count=max_label_count,
padding=args.padding)
with tf.device(cpu_or_gpu):
print("Training...")
model.fit(x=training_input,
y=training_label,
validation_data=(val_input, val_label),
batch_size=args.mini_batch_size,
verbose=args.verbosity,
shuffle=True,
epochs=args.max_epochs,
callbacks=callbacks)
elif args.training_mode in generator_training_modes:
if args.training_mode == "batch":
input_generator = vectorize_generator(SequenceSegmentInformationStreamGenerator(args.input),
max_base_count=max_base_count,
max_feature_count=max_feature_count,
max_label_count=max_label_count,
mini_batch_size=input_mini_batch_size,
num_segments=input_num_segments,
padding=args.padding)
val_generator = vectorize_generator(SequenceSegmentInformationStreamGenerator(args.validation),
max_base_count=max_base_count,
max_feature_count=max_feature_count,
max_label_count=max_label_count,
mini_batch_size=val_mini_batch_size,
num_segments=val_num_segments,
padding=args.padding)
elif args.training_mode == "sequence":
raise Exception("sequence mode not supported yet")
else:
raise Exception("Unrecognized training mode")
input_updates = math.ceil(input_num_segments / input_mini_batch_size)
val_updates = math.ceil(val_num_segments / val_mini_batch_size)
use_multiprocessing = args.parallel is not None
num_workers = args.parallel if args.parallel is not None else 1
with tf.device(cpu_or_gpu):
print("Training...")
model.fit_generator(generator=input_generator,
steps_per_epoch=input_updates,
validation_data=val_generator,
validation_steps=val_updates,
epochs=args.max_epochs,
callbacks=callbacks,
verbose=args.verbosity,
use_multiprocessing=use_multiprocessing,
workers=num_workers)
else:
raise Exception("Unrecognized training mode")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--training-mode", type=str,
choices=["whole", "batch", "sequence"], required=True,
help="Training mode- whole loads training and validation tensors into memory at once; "
"batch creates training and validation tensors of size mini-batch-size using a generator; "
"sequence behaves similarly to batch, but uses a keras.utils.Sequence object for "
"multiprocessing")
parser.add_argument("-i", "--input", type=str, required=True,
help="SSI file with input segments.")
parser.add_argument("-v", "--validation", type=str, required=True,
help="SSI file with validation segments.")
parser.add_argument("--bidirectional", dest="bidirectional", action="store_true",
help="When set, train a bidirectional LSTM.")
parser.add_argument("--lstm-units", type=int, default=64, help="Number of LSTM units.")
parser.add_argument("--num-layers", type=int, default=1, help="Number of hidden LSTM layers.")
parser.add_argument("--platform", required=True, type=str, choices=["cpu", "gpu"],
help="Platform to train on: cpu or gpu.")
parser.add_argument("--gpu-device", type=int, default=0, help="Index of the GPU to use, when platform is gpu. "
"Not recommended, set CUDA_VISIBLE_DEVICES instead.")
parser.add_argument("--layer-type", type=str, choices=["LSTM", "RNN", "GRU", "SRU"], default="LSTM",
help="Type of RNN layer to use.")
parser.add_argument("--learning-rate", type=float, default=0.01, help="Learning rate.")
parser.add_argument("--model-prefix", type=str, default="model",
help="Prefix (a short string) to name model checkpoints with")
parser.add_argument("--min-delta", type=float, default=0, help="Minimum delta for loss improvement in each epoch.")
parser.add_argument("--tensorboard", dest="tensorboard", action="store_true",
help="When set, use an interactive session and monitor on tensorboard.")
parser.add_argument("--show-mappings", dest="show_mappings", action="store_true",
help="When set, show operation placements on cpu/gpu devices.")
parser.add_argument("--verbosity", type=int, default=1, choices=[0, 1, 2],
help="Level of verbosity, 0, not verbose, 1, progress bar, 2, one line per epoch.")
parser.add_argument("--input-mini-batch-size", type=int, default=128,
help="Number of sequences to train on at a time. Larger values increase speed, "
"but require more memory.")
parser.add_argument("--validation-mini-batch-size", type=int, default=128,
help="Number of sequences to validate on at a time. Larger values increase speed, "
"but require more memory.")
parser.add_argument("--max-epochs", type=int, default=60, help="Maximum number of epochs to train for.")
parser.add_argument("--l1", type=float, help="L1 regularization rate.")
parser.add_argument("--l2", type=float, help="L2 regularization rate.")
parser.add_argument("--parallel", type=int, help="Run training in parallel, with n workers.")
parser.add_argument("--padding", type=str, choices=["pre", "post"], default="post",
help="Whether to pad timesteps before or after sequences. Only used for whole, batch, and "
"sequence training modes.")
parser_args = parser.parse_args()
main(parser_args)
|