File: TestFisherExact.java

package info (click to toggle)
libgoby-java 3.3.1%2Bdfsg2-12
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 58,108 kB
  • sloc: java: 78,105; cpp: 5,011; xml: 3,170; python: 2,108; sh: 1,575; ansic: 277; makefile: 114
file content (200 lines) | stat: -rw-r--r-- 8,934 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
 * Copyright (C) 2010 Institute for Computational Biomedicine,
 *                    Weill Medical College of Cornell University
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

package org.campagnelab.goby.R;

import DistLib.hypergeometric;
import org.apache.commons.lang.ArrayUtils;
import org.junit.AfterClass;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertNotNull;
import static org.junit.Assert.assertTrue;
import org.junit.BeforeClass;
import org.junit.Test;
import org.rosuda.JRI.Rengine;

/**
 * Validates the functionality of the {@link org.campagnelab.goby.R.FisherExact} class.
 */
public class TestFisherExact {
    /**
     * Default epsilon for double comparsions.
     */
    private static final double EPSILON = 1.0e-12;

    /**
     * Example data from
     * <a href="http://darwin.eeb.uconn.edu/eeb348/supplements-2006/chi-squared/chi-squared.html">
     * http://darwin.eeb.uconn.edu/eeb348/supplements-2006/chi-squared/chi-squared.html</a>.
     */
    @Test
    public void chiSquaredUConn() {
        final FisherExact.Result result =
                FisherExact.fexact(new int[] {12, 4, 15, 17, 25, 4 }, 3, 2);
        assertEquals("pValue does not match", 2.9565806126420623e-05, result.getPValue(), EPSILON);
    }

    /**
     * Validates the same input given to different convenience methods produces the same result.
     */
    @Test
    public void twoByTwoEquivalent() {
        final FisherExact.Result result1 = FisherExact.fexact(new int[] {10, 20, 30, 40}, 2, 2);
        final FisherExact.Result result2 = FisherExact.fexact(10, 20, 30, 40);

        assertEquals("pValue does not match",
                result1.getPValue(), result2.getPValue(), EPSILON);
        assertEquals("Lower confidence interval does not match",
                result1.getConfidenceInterval()[0], result2.getConfidenceInterval()[0], EPSILON);
        assertEquals("Upper confidence interval does not match",
                result1.getConfidenceInterval()[1], result2.getConfidenceInterval()[1], EPSILON);
        assertEquals("Estimate does not match",
                result1.getEstimate(), result2.getEstimate(), EPSILON);
        assertEquals("Odds ratio does not match"
                , result1.getOddsRatio(), result2.getOddsRatio(), EPSILON);
    }

    /**
     * An an example of an R x C table from Agresti (2002, p. 57) Job Satisfaction.
     */
    @Test
    public void agrestiJobSatisfaction() {
        final int[] inputTable = {
                /*                           income
                /* satisfaction    <15k    15-25k    25-40k   >40k */
                /*  VeryD */        1,       2,        1,      0,
                /*  LittleD */      3,       3,        6,      1,
                /*  ModerateS */    10,      10,       14,     9,
                /*  VeryS */        6,       7,        12,     11
        };

        final FisherExact.Result result = FisherExact.fexact(inputTable, 4, 4);
        assertEquals("pValue does not match", 0.7826849389656096, result.getPValue(), EPSILON);

        // everything else should be invalid since the input was not a 2x2 matrix
        assertNotNull("Confidence interval should not be null", result.getConfidenceInterval());
        assertTrue("Confidence interval should be an empty array",
                ArrayUtils.isEmpty(result.getConfidenceInterval()));
        assertTrue("Estimate should be NaN", Double.isNaN(result.getEstimate()));
        assertTrue("Odds ratio should be NaN", Double.isNaN(result.getOddsRatio()));
        assertEquals("Wrong Hypothesis for result", FisherExact.AlternativeHypothesis.twosided,
                result.getAlternativeHypothesis());

    }

    /**
     * Fisher Tea Tasting example.  A British woman claimed to be able to distinguish
     * whether milk or tea was added to the cup first.  To test, she was given 8 cups of
     * tea, in four of which milk was added first.  The null hypothesis is that there is
     * no association between the true order of pouring and the women's guess, the
     * alternative that there is a positive association (that the odds ratio
     * is greater than 1).
     */
    @Test
    public void agrestiTeaTasting() {
        final int[] inputTable = {
                /*          Truth */
                /* Guess    Milk  Tea */
                /* Milk */    3,   1,
                /*  Tea */    1,   3
        };

        final FisherExact.Result result =
                FisherExact.fexact(inputTable, 2, 2, FisherExact.AlternativeHypothesis.greater);
        assertEquals("pValue does not match", 0.24285714285714288, result.getPValue(), EPSILON);
        assertEquals("Lower confidence interval does not match", 0.313569264110218,
                result.getConfidenceInterval()[0], EPSILON);
        assertTrue("Upper confidence interval should be infinite",
                Double.isInfinite(result.getConfidenceInterval()[1]));
        assertEquals("Estimate does not match", 6.408308867005793,  result.getEstimate(), EPSILON);
        assertEquals("Odds ratio does not match", 1.0, result.getOddsRatio(), EPSILON);
        assertEquals("Wrong Hypothesis for result", FisherExact.AlternativeHypothesis.greater,
                result.getAlternativeHypothesis());
    }

    /**
     * Fisher (1962, 1970), Criminal convictions of like-sex twins.
     */
    @Test
    public void twinConvictions() {
        final int[] inputTable = {
                /*                   Dizygotic   Monozygotic */
                /* Convicted */         2,           10,
                /* Not Convicted */     15,          3
        };

        final FisherExact.Result result =
                FisherExact.fexact(inputTable, 2, 2, FisherExact.AlternativeHypothesis.less);
        assertEquals("pValue does not match", 0.00046518094336290525, result.getPValue(), EPSILON);
        assertEquals("Lower confidence interval does not match", 0.0,
                result.getConfidenceInterval()[0], EPSILON);
        assertEquals("Upper confidence interval does not match", 0.2849601379355694,
                result.getConfidenceInterval()[1], EPSILON);
        assertEquals("Estimate does not match", 0.04693660882769885, result.getEstimate(), EPSILON);
        assertEquals("Odds ratio does not match", 1.0, result.getOddsRatio(), EPSILON);
        assertEquals("Wrong Hypothesis for result", FisherExact.AlternativeHypothesis.less,
                result.getAlternativeHypothesis());
    }

    /**
     * Validates that the R implementation returns the same p-value for a simple
     * example set.
     */
    @Test
    public void twoTailed() {
        //Variables names for the analogy with R arguments.
        double x = 10;
        double whiteBalls = 30;
        double blackBalls = 70;
        double n = 40;
        double sumProba = 0.;
        //Determining the probability of the given grid under the null hypothesis.
        double probabilityGrid = hypergeometric.density(x, whiteBalls, blackBalls, n);
        //Computing the p-value by summing the probabilities of grids that are at least as unlikely as the current one.
        for (double i = Math.max(0, n - blackBalls) ; i < Math.min(n, whiteBalls) + 1.E-13 ; i++) {
            double thisProba = hypergeometric.density(i, whiteBalls, blackBalls, n);
            if (thisProba < probabilityGrid + 1.E-13) {
                sumProba += thisProba;
            }
        }

        final double fisherExactPValue = FisherExact.twoTailed(40, 10, 100, 30);
        assertEquals("R result does not match hand-computed", sumProba, fisherExactPValue, EPSILON);
    }

    /**
     * If R libraries are not set up properly these tests cannot be run.
     */
    @BeforeClass
    public static void assertRAvailable() {
        final Rengine rengine = GobyRengine.getInstance().getRengine();
        assertNotNull("R engine is not available", rengine);
        assertTrue("R is not null but is not alive either", rengine.isAlive());
    }

    /**
     * Notify {@link org.rosuda.JRI.Rengine} that the thread can be safely terminated.
     */
    @AfterClass
    public static void terminateRThread() {
        final Rengine rengine = GobyRengine.getInstance().getRengine();
        if (rengine != null) {
            rengine.end();
        }
    }
}