1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
from __future__ import division
import numpy as np
from .elemwise import elemwise1, elemwise2, ielemwise2, compare, arg, GpuElemwise, as_argument
from .reduction import reduce1
from .dtypes import dtype_to_ctype, get_np_obj, get_common_dtype
from . import gpuarray
class ndgpuarray(gpuarray.GpuArray):
"""
Extension class for gpuarray.GpuArray to add numpy mathematical
operations between arrays. These operations are all performed on
the GPU but this is not the most efficient way since it will
involve the creation of temporaries (just like numpy) for all
intermediate results.
This class may help transition code from numpy to pygpu by acting
more like a drop-in replacement for numpy.ndarray than the raw
GpuArray class.
"""
# add
def __add__(self, other):
return elemwise2(self, '+', other, self, broadcast=True)
def __radd__(self, other):
return elemwise2(other, '+', self, self, broadcast=True)
def __iadd__(self, other):
return ielemwise2(self, '+', other, broadcast=True)
# sub
def __sub__(self, other):
return elemwise2(self, '-', other, self, broadcast=True)
def __rsub__(self, other):
return elemwise2(other, '-', self, self, broadcast=True)
def __isub__(self, other):
return ielemwise2(self, '-', other, broadcast=True)
# mul
def __mul__(self, other):
return elemwise2(self, '*', other, self, broadcast=True)
def __rmul__(self, other):
return elemwise2(other, '*', self, self, broadcast=True)
def __imul__(self, other):
return ielemwise2(self, '*', other, broadcast=True)
# div
def __div__(self, other):
return elemwise2(self, '/', other, self, broadcast=True)
def __rdiv__(self, other):
return elemwise2(other, '/', self, self, broadcast=True)
def __idiv__(self, other):
return ielemwise2(self, '/', other, broadcast=True)
# truediv
def __truediv__(self, other):
np1 = get_np_obj(self)
np2 = get_np_obj(other)
res = (np1.__truediv__(np2)).dtype
return elemwise2(self, '/', other, self, odtype=res, broadcast=True)
def __rtruediv__(self, other):
np1 = get_np_obj(self)
np2 = get_np_obj(other)
res = (np2.__truediv__(np1)).dtype
return elemwise2(other, '/', self, self, odtype=res, broadcast=True)
def __itruediv__(self, other):
np2 = get_np_obj(other)
kw = {'broadcast': True}
if self.dtype == np.float32 or np2.dtype == np.float32:
kw['op_tmpl'] = "a = (float)a / (float)b"
if self.dtype == np.float64 or np2.dtype == np.float64:
kw['op_tmpl'] = "a = (double)a / (double)b"
return ielemwise2(self, '/', other, **kw)
# floordiv
def __floordiv__(self, other):
out_dtype = get_common_dtype(self, other, True)
kw = {'broadcast': True}
if out_dtype.kind == 'f':
kw['op_tmpl'] = "res = floor((%(out_t)s)a / (%(out_t)s)b)"
return elemwise2(self, '/', other, self, odtype=out_dtype, **kw)
def __rfloordiv__(self, other):
out_dtype = get_common_dtype(other, self, True)
kw = {'broadcast': True}
if out_dtype.kind == 'f':
kw['op_tmpl'] = "res = floor((%(out_t)s)a / (%(out_t)s)b)"
return elemwise2(other, '/', self, self, odtype=out_dtype, **kw)
def __ifloordiv__(self, other):
out_dtype = self.dtype
kw = {'broadcast': True}
if out_dtype == np.float32:
kw['op_tmpl'] = "a = floor((float)a / (float)b)"
if out_dtype == np.float64:
kw['op_tmpl'] = "a = floor((double)a / (double)b)"
return ielemwise2(self, '/', other, **kw)
# mod
def __mod__(self, other):
out_dtype = get_common_dtype(self, other, True)
kw = {'broadcast': True}
if out_dtype.kind == 'f':
kw['op_tmpl'] = "res = fmod((%(out_t)s)a, (%(out_t)s)b)"
return elemwise2(self, '%', other, self, odtype=out_dtype, **kw)
def __rmod__(self, other):
out_dtype = get_common_dtype(other, self, True)
kw = {'broadcast': True}
if out_dtype.kind == 'f':
kw['op_tmpl'] = "res = fmod((%(out_t)s)a, (%(out_t)s)b)"
return elemwise2(other, '%', self, self, odtype=out_dtype, **kw)
def __imod__(self, other):
out_dtype = get_common_dtype(self, other, self.dtype == np.float64)
kw = {'broadcast': True}
if out_dtype == np.float32:
kw['op_tmpl'] = "a = fmod((float)a, (float)b)"
if out_dtype == np.float64:
kw['op_tmpl'] = "a = fmod((double)a, (double)b)"
return ielemwise2(self, '%', other, **kw)
# divmod
def __divmod__(self, other):
if not isinstance(other, gpuarray.GpuArray):
other = np.asarray(other)
odtype = get_common_dtype(self, other, True)
a_arg = as_argument(self, 'a', read=True)
b_arg = as_argument(other, 'b', read=True)
args = [arg('div', odtype, write=True), arg('mod', odtype, write=True), a_arg, b_arg]
div = self._empty_like_me(dtype=odtype)
mod = self._empty_like_me(dtype=odtype)
if odtype.kind == 'f':
tmpl = ("div = floor((%(out_t)s)a / (%(out_t)s)b),"
"mod = fmod((%(out_t)s)a, (%(out_t)s)b)")
else:
tmpl = ("div = (%(out_t)s)a / (%(out_t)s)b,"
"mod = a %% b")
ksrc = tmpl % {'out_t': dtype_to_ctype(odtype)}
k = GpuElemwise(self.context, ksrc, args)
k(div, mod, self, other, broadcast=True)
return (div, mod)
def __rdivmod__(self, other):
if not isinstance(other, gpuarray.GpuArray):
other = np.asarray(other)
odtype = get_common_dtype(other, self, True)
a_arg = as_argument(other, 'a', read=True)
b_arg = as_argument(self, 'b', read=True)
args = [arg('div', odtype, write=True), arg('mod', odtype, write=True), a_arg, b_arg]
div = self._empty_like_me(dtype=odtype)
mod = self._empty_like_me(dtype=odtype)
if odtype.kind == 'f':
tmpl = ("div = floor((%(out_t)s)a / (%(out_t)s)b),"
"mod = fmod((%(out_t)s)a, (%(out_t)s)b)")
else:
tmpl = ("div = (%(out_t)s)a / (%(out_t)s)b,"
"mod = a %% b")
ksrc = tmpl % {'out_t': dtype_to_ctype(odtype)}
k = GpuElemwise(self.context, ksrc, args)
k(div, mod, other, self, broadcast=True)
return (div, mod)
def __neg__(self):
return elemwise1(self, '-')
def __pos__(self):
return elemwise1(self, '+')
def __abs__(self):
if self.dtype.kind == 'u':
return self.copy()
if self.dtype.kind == 'f':
oper = "res = fabs(a)"
elif self.dtype.itemsize < 4:
# cuda 5.5 finds the c++ stdlib definition if we don't cast here.
oper = "res = abs((int)a)"
else:
oper = "res = abs(a)"
return elemwise1(self, None, oper=oper)
# richcmp
def __lt__(self, other):
return compare(self, '<', other, broadcast=True)
def __le__(self, other):
return compare(self, '<=', other, broadcast=True)
def __eq__(self, other):
return compare(self, '==', other, broadcast=True)
def __ne__(self, other):
return compare(self, '!=', other, broadcast=True)
def __ge__(self, other):
return compare(self, '>=', other, broadcast=True)
def __gt__(self, other):
return compare(self, '>', other, broadcast=True)
# misc other things
@property
def T(self):
if self.ndim < 2:
return self
return self.transpose()
"""
Since these functions are untested (thus probably wrong), we disable them.
def clip(self, a_min, a_max, out=None):
oper=('res = a > %(max)s ? %(max)s : '
'(a < %(min)s ? %(min)s : a)' % dict(min=a_min, max=a_max))
return elemwise1(self, '', oper=oper, out=out)
def fill(self, value):
self[...] = value
"""
# reductions
def all(self, axis=None, out=None):
if self.ndim == 0:
return self.copy()
return reduce1(self, '&&', '1', np.dtype('bool'),
axis=axis, out=out)
def any(self, axis=None, out=None):
if self.ndim == 0:
return self.copy()
return reduce1(self, '||', '0', np.dtype('bool'),
axis=axis, out=out)
def prod(self, axis=None, dtype=None, out=None):
if dtype is None:
dtype = self.dtype
# we only upcast integers that are smaller than the plaform default
if dtype.kind == 'i':
di = np.dtype('int')
if di.itemsize > dtype.itemsize:
dtype = di
if dtype.kind == 'u':
di = np.dtype('uint')
if di.itemsize > dtype.itemsize:
dtype = di
return reduce1(self, '*', '1', dtype, axis=axis, out=out)
# def max(self, axis=None, out=None);
# nd = self.ndim
# if nd == 0:
# return self.copy()
# idx = (0,) * nd
# n = str(self.__getitem__(idx).__array__())
# return reduce1(self, '', n, self.dtype, axis=axis, out=out,
# oper='max(a, b)')
# def min(self, axis=None, out=None):
# nd = self.ndim
# if nd == 0:
# return self.copy()
# idx = (0,) * nd
# n = str(self.__getitem__(idx).__array__())
# return reduce1(self, '', n, self.dtype, axis=axis, out=out,
# oper='min(a, b)')
def sum(self, axis=None, dtype=None, out=None):
if dtype is None:
dtype = self.dtype
# we only upcast integers that are smaller than the plaform default
if dtype.kind == 'i':
di = np.dtype('int')
if di.itemsize > dtype.itemsize:
dtype = di
if dtype.kind == 'u':
di = np.dtype('uint')
if di.itemsize > dtype.itemsize:
dtype = di
return reduce1(self, '+', '0', dtype, axis=axis, out=out)
|