1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
import math
import re
from mako.template import Template
import numpy
from . import gpuarray
from .tools import ScalarArg, ArrayArg, check_args, prod, lru_cache
from .dtypes import parse_c_arg_backend
def parse_c_args(arguments):
return tuple(parse_c_arg_backend(arg, ScalarArg, ArrayArg)
for arg in arguments.split(','))
INDEX_RE = re.compile('([a-zA-Z_][a-zA-Z0-9_]*)\[i\]')
def massage_op(operation):
return INDEX_RE.sub('\g<1>[0]', operation)
def _ceil_log2(x):
# nearest power of 2 (going up)
if x != 0:
return int(math.ceil(math.log(x, 2)))
else:
return 0
basic_kernel = Template("""
#include "cluda.h"
${preamble}
#define REDUCE(a, b) (${reduce_expr})
KERNEL void ${name}(const unsigned int n, ${out_arg.decltype()} out,
const unsigned int out_off
% for d in range(nd):
, const unsigned int dim${d}
% endfor
% for arg in arguments:
% if arg.isarray():
, ${arg.decltype()} ${arg.name}_data
, const unsigned int ${arg.name}_offset
% for d in range(nd):
, const int ${arg.name}_str_${d}
% endfor
% else:
, ${arg.decltype()} ${arg.name}
% endif
% endfor
) {
LOCAL_MEM ${out_arg.ctype()} ldata[${local_size}];
const unsigned int lid = LID_0;
unsigned int i;
GLOBAL_MEM char *tmp;
% for arg in arguments:
% if arg.isarray():
tmp = (GLOBAL_MEM char *)${arg.name}_data; tmp += ${arg.name}_offset;
${arg.name}_data = (${arg.decltype()})tmp;
% endif
% endfor
tmp = (GLOBAL_MEM char *)out; tmp += out_off;
out = (${out_arg.decltype()})tmp;
i = GID_0;
% for i in range(nd-1, -1, -1):
% if not redux[i]:
% if i > 0:
const unsigned int pos${i} = i % dim${i};
i = i / dim${i};
% else:
const unsigned int pos${i} = i;
% endif
% endif
% endfor
${out_arg.ctype()} acc = ${neutral};
for (i = lid; i < n; i += LDIM_0) {
int ii = i;
int pos;
% for arg in arguments:
% if arg.isarray():
GLOBAL_MEM char *${arg.name}_p = (GLOBAL_MEM char *)${arg.name}_data;
% endif
% endfor
% for i in range(nd-1, -1, -1):
% if redux[i]:
% if i > 0:
pos = ii % dim${i};
ii = ii / dim${i};
% else:
pos = ii;
% endif
% for arg in arguments:
% if arg.isarray():
${arg.name}_p += pos * ${arg.name}_str_${i};
% endif
% endfor
% else:
% for arg in arguments:
% if arg.isarray():
${arg.name}_p += pos${i} * ${arg.name}_str_${i};
% endif
% endfor
% endif
% endfor
% for arg in arguments:
% if arg.isarray():
${arg.decltype()} ${arg.name} = (${arg.decltype()})${arg.name}_p;
% endif
% endfor
acc = REDUCE((acc), (${map_expr}));
}
ldata[lid] = acc;
<% cur_size = local_size %>
% while cur_size > 1:
<% cur_size = cur_size // 2 %>
local_barrier();
if (lid < ${cur_size}) {
ldata[lid] = REDUCE(ldata[lid], ldata[lid+${cur_size}]);
}
% endwhile
local_barrier();
if (lid == 0) out[GID_0] = ldata[0];
}
""")
class ReductionKernel(object):
def __init__(self, context, dtype_out, neutral, reduce_expr, redux,
map_expr=None, arguments=None, preamble="", init_nd=None):
self.context = context
self.neutral = neutral
self.redux = tuple(redux)
if not any(self.redux):
raise ValueError("Reduction is along no axes")
self.dtype_out = dtype_out
self.out_arg = ArrayArg(numpy.dtype(self.dtype_out), 'out')
if isinstance(arguments, str):
self.arguments = parse_c_args(arguments)
elif arguments is None:
self.arguments = [ArrayArg(numpy.dtype(self.dtype_out),
'_reduce_input')]
else:
self.arguments = arguments
if (self.dtype_out == numpy.dtype('float16') or
any(ar.dtype == numpy.dtype('float16')
for ar in self.arguments)):
raise NotImplementedError('float16 not supported for the '
'reduction interface')
self.reduce_expr = reduce_expr
if map_expr is None:
if len(self.arguments) != 1:
raise ValueError("Don't know what to do with more than one "
"argument. Specify map_expr to explicitly "
"state what you want.")
self.operation = "%s[i]" % (self.arguments[0].name,)
self.expression = "%s[0]" % (self.arguments[0].name,)
else:
self.operation = map_expr
self.expression = massage_op(map_expr)
if not any(isinstance(arg, ArrayArg) for arg in self.arguments):
raise ValueError("ReductionKernel can only be used with "
"functions that have at least one vector "
"argument.")
have_small = False
have_double = False
have_complex = False
for arg in self.arguments:
if arg.dtype.itemsize < 4 and type(arg) == ArrayArg:
have_small = True
if arg.dtype in [numpy.float64, numpy.complex128]:
have_double = True
if arg.dtype in [numpy.complex64, numpy.complex128]:
have_complex = True
self.flags = dict(have_small=have_small, have_double=have_double,
have_complex=have_complex)
self.preamble = preamble
self.init_local_size = min(context.lmemsize //
self.out_arg.dtype.itemsize,
context.maxlsize0)
# this is to prep the cache
if init_nd is not None:
self._get_basic_kernel(self.init_local_size, init_nd)
def _find_kernel_ls(self, tmpl, max_ls, *tmpl_args):
local_size = min(self.init_local_size, max_ls)
count_lim = _ceil_log2(local_size)
local_size = int(2**count_lim)
loop_count = 0
while loop_count <= count_lim:
k, src, spec = tmpl(local_size, *tmpl_args)
if local_size <= k.maxlsize:
return k, src, spec, local_size
else:
local_size //= 2
loop_count += 1
raise RuntimeError("Can't stabilize the local_size for kernel."
" Please report this along with your "
"reduction code.")
def _gen_basic(self, ls, nd):
src = basic_kernel.render(preamble=self.preamble,
reduce_expr=self.reduce_expr,
name="reduk",
out_arg=self.out_arg,
nd=nd, arguments=self.arguments,
local_size=ls,
redux=self.redux,
neutral=self.neutral,
map_expr=self.expression)
spec = ['uint32', gpuarray.GpuArray, 'uint32']
spec.extend('uint32' for _ in range(nd))
for i, arg in enumerate(self.arguments):
spec.append(arg.spec())
if arg.isarray():
spec.append('uint32')
spec.extend('int32' for _ in range(nd))
k = gpuarray.GpuKernel(src, "reduk", spec, context=self.context,
**self.flags)
return k, src, spec
@lru_cache()
def _get_basic_kernel(self, maxls, nd):
return self._find_kernel_ls(self._gen_basic, maxls, nd)
def __call__(self, *args, **kwargs):
broadcast = kwargs.pop('broadcast', None)
out = kwargs.pop('out', None)
if len(kwargs) != 0:
raise TypeError('Unexpected keyword argument: %s' %
kwargs.keys()[0])
_, nd, dims, strs, offsets = check_args(args, collapse=False,
broadcast=broadcast)
n = prod(dims)
out_shape = tuple(d for i, d in enumerate(dims) if not self.redux[i])
gs = prod(out_shape)
if gs == 0:
gs = 1
n /= gs
if gs > self.context.maxgsize0:
raise ValueError("Array too big to be reduced along the "
"selected axes")
if out is None:
out = gpuarray.empty(out_shape, context=self.context,
dtype=self.dtype_out)
else:
if out.shape != out_shape or out.dtype != self.dtype_out:
raise TypeError(
"Out array is not of expected type (expected %s %s, "
"got %s %s)" % (out_shape, self.dtype_out, out.shape,
out.dtype))
# Don't compile and cache for nothing for big size
if self.init_local_size < n:
k, _, _, ls = self._get_basic_kernel(self.init_local_size, nd)
else:
k, _, _, ls = self._get_basic_kernel(2**_ceil_log2(n), nd)
kargs = [n, out, out.offset]
kargs.extend(dims)
for i, arg in enumerate(args):
kargs.append(arg)
if isinstance(arg, gpuarray.GpuArray):
kargs.append(offsets[i])
kargs.extend(strs[i])
k(*kargs, gs=gs, ls=ls)
return out
def reduce1(ary, op, neutral, out_type, axis=None, out=None, oper=None):
nd = ary.ndim
if axis is None:
redux = [True] * nd
else:
redux = [False] * nd
if not isinstance(axis, (list, tuple)):
axis = (axis,)
for ax in axis:
if ax < 0:
ax += nd
if ax < 0 or ax >= nd:
raise ValueError('axis out of bounds')
redux[ax] = True
if oper is None:
reduce_expr = "a %s b" % (op,)
else:
reduce_expr = oper
r = ReductionKernel(ary.context, dtype_out=out_type, neutral=neutral,
reduce_expr=reduce_expr, redux=redux,
arguments=[ArrayArg(ary.dtype, 'a')])
return r(ary, out=out)
|