1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
from __future__ import print_function
import os
import sys
import numpy
import pytest
from pygpu import gpuarray
if numpy.__version__ < '1.6.0':
skip_single_f = True
else:
skip_single_f = False
dtypes_all = ["float32", "float64",
"int8", "int16", "uint8", "uint16",
"int32", "int64", "uint32", "uint64"]
dtypes_no_complex = dtypes_all
# Sometimes int8 is just a source of trouble (like with overflows)
dtypes_no_complex_big = ["float32", "float64", "int16", "uint16",
"int32", "int64", "uint32", "uint64"]
def get_env_dev():
for name in ['GPUARRAY_TEST_DEVICE', 'DEVICE']:
if name in os.environ:
return os.environ[name]
raise RuntimeError(
"No test device specified. Specify one using the DEVICE "
"or GPUARRAY_TEST_DEVICE environment variables.")
context = gpuarray.init(get_env_dev())
print("*** Testing for", context.devname, file=sys.stderr)
def guard_devsup(func):
def f(*args, **kwargs):
try:
func(*args, **kwargs)
except gpuarray.UnsupportedException as e:
pytest.skip("operation not supported")
return f
def rand(shape, dtype):
r = numpy.random.randn(*shape) * 10
if r.dtype.startswith('u'):
r = numpy.absolute(r)
return r.astype(dtype)
def check_flags(x, y):
assert isinstance(x, gpuarray.GpuArray)
if y.size == 0 and y.flags["C_CONTIGUOUS"] and y.flags["F_CONTIGUOUS"]:
# Different numpy version have different value for
# C_CONTIGUOUS in that case.
pass
elif x.flags["C_CONTIGUOUS"] != y.flags["C_CONTIGUOUS"]:
# Numpy 1.10 can set c/f contiguous more frequently by
# ignoring strides on dimensions of size 1.
assert x.flags["C_CONTIGUOUS"] is True, (x.flags, y.flags)
assert x.flags["F_CONTIGUOUS"] is False, (x.flags, y.flags)
assert y.flags["C_CONTIGUOUS"] is False, (x.flags, y.flags)
# That depend of numpy version.
# assert y.flags["F_CONTIGUOUS"] is True, (x.flags, y.flags)
else:
if not (skip_single_f and x.shape == ()):
# Numpy below 1.6.0 does not have a consistent handling of
# f-contiguous for 0-d arrays
if not any([s == 1 for s in x.shape]):
# Numpy 1.10 can set f contiguous more frequently by
# ignoring strides on dimensions of size 1.
assert x.flags["F_CONTIGUOUS"] == y.flags["F_CONTIGUOUS"], (
x.flags, y.flags)
else:
assert x.flags["F_CONTIGUOUS"]
assert x.flags["WRITEABLE"] == y.flags["WRITEABLE"], (x.flags, y.flags)
# Don't check for OWNDATA since it is always true for a GpuArray
assert x.flags["ALIGNED"] == y.flags["ALIGNED"], (x.flags, y.flags)
assert x.flags["WRITEBACKIFCOPY"] == y.flags["WRITEBACKIFCOPY"], (x.flags,
y.flags)
def check_meta_only(x, y):
assert isinstance(x, gpuarray.GpuArray)
assert x.shape == y.shape
assert x.dtype == y.dtype
if y.size != 0:
assert x.strides == y.strides
def check_content(x, y):
assert isinstance(x, gpuarray.GpuArray)
assert numpy.allclose(numpy.asarray(x), numpy.asarray(y))
def check_meta(x, y):
check_meta_only(x, y)
check_flags(x, y)
def check_all(x, y):
check_meta(x, y)
check_content(x, y)
def check_meta_content(x, y):
check_meta_only(x, y)
check_content(x, y)
def gen_gpuarray(shape_orig, dtype='float32', offseted_outer=False,
offseted_inner=False, sliced=1, order='c', nozeros=False,
incr=0, ctx=None, cls=None):
if sliced is True:
sliced = 2
elif sliced is False:
sliced = 1
shape = numpy.asarray(shape_orig).copy()
if sliced != 1 and len(shape) > 0:
shape[0] *= numpy.absolute(sliced)
if offseted_outer and len(shape) > 0:
shape[0] += 1
if offseted_inner and len(shape) > 0:
shape[-1] += 1
low = 0.0
if nozeros:
low = 1.0
a = numpy.random.uniform(low, 10.0, shape)
a += incr
a = numpy.asarray(a, dtype=dtype)
b = gpuarray.array(a, context=ctx, cls=cls)
assert order in ['c', 'f']
if order == 'f' and len(shape) > 0:
a = numpy.asfortranarray(a)
b = gpuarray.asfortranarray(b)
if order == 'f' and len(shape) > 0 and b.size > 1:
assert b.flags['F_CONTIGUOUS']
if offseted_outer and len(shape) > 0:
b = b[1:]
a = a[1:]
if offseted_inner and len(shape) > 0:
# The b[..., 1:] act as the test for this subtensor case.
b = b[..., 1:]
a = a[..., 1:]
if sliced != 1 and len(shape) > 0:
a = a[::sliced]
b = b[::sliced]
if False and shape_orig == ():
assert a.shape == (1,)
assert b.shape == (1,)
else:
assert a.shape == shape_orig, (a.shape, shape_orig)
assert b.shape == shape_orig, (b.shape, shape_orig)
assert numpy.allclose(a, numpy.asarray(b)), (a, numpy.asarray(b))
return a, b
|