File: support.py

package info (click to toggle)
libgpuarray 0.7.6-13
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,176 kB
  • sloc: ansic: 19,235; python: 4,591; makefile: 208; javascript: 71; sh: 15
file content (168 lines) | stat: -rw-r--r-- 5,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from __future__ import print_function

import os
import sys

import numpy
import pytest

from pygpu import gpuarray


if numpy.__version__ < '1.6.0':
    skip_single_f = True
else:
    skip_single_f = False

dtypes_all = ["float32", "float64",
              "int8", "int16", "uint8", "uint16",
              "int32", "int64", "uint32", "uint64"]

dtypes_no_complex = dtypes_all

# Sometimes int8 is just a source of trouble (like with overflows)
dtypes_no_complex_big = ["float32", "float64", "int16", "uint16",
                         "int32", "int64", "uint32", "uint64"]


def get_env_dev():
    for name in ['GPUARRAY_TEST_DEVICE', 'DEVICE']:
        if name in os.environ:
            return os.environ[name]
    raise RuntimeError(
        "No test device specified.  Specify one using the DEVICE "
        "or GPUARRAY_TEST_DEVICE environment variables.")


context = gpuarray.init(get_env_dev())
print("*** Testing for", context.devname, file=sys.stderr)


def guard_devsup(func):
    def f(*args, **kwargs):
        try:
            func(*args, **kwargs)
        except gpuarray.UnsupportedException as e:
            pytest.skip("operation not supported")
    return f


def rand(shape, dtype):
    r = numpy.random.randn(*shape) * 10
    if r.dtype.startswith('u'):
        r = numpy.absolute(r)
    return r.astype(dtype)


def check_flags(x, y):
    assert isinstance(x, gpuarray.GpuArray)
    if y.size == 0 and y.flags["C_CONTIGUOUS"] and y.flags["F_CONTIGUOUS"]:
        # Different numpy version have different value for
        # C_CONTIGUOUS in that case.
        pass
    elif x.flags["C_CONTIGUOUS"] != y.flags["C_CONTIGUOUS"]:
        # Numpy 1.10 can set c/f contiguous more frequently by
        # ignoring strides on dimensions of size 1.
        assert x.flags["C_CONTIGUOUS"] is True, (x.flags, y.flags)
        assert x.flags["F_CONTIGUOUS"] is False, (x.flags, y.flags)
        assert y.flags["C_CONTIGUOUS"] is False, (x.flags, y.flags)
        # That depend of numpy version.
        # assert y.flags["F_CONTIGUOUS"] is True, (x.flags, y.flags)
    else:
        if not (skip_single_f and x.shape == ()):
            # Numpy below 1.6.0 does not have a consistent handling of
            # f-contiguous for 0-d arrays
            if not any([s == 1 for s in x.shape]):
                # Numpy 1.10 can set f contiguous more frequently by
                # ignoring strides on dimensions of size 1.
                assert x.flags["F_CONTIGUOUS"] == y.flags["F_CONTIGUOUS"], (
                    x.flags, y.flags)
        else:
            assert x.flags["F_CONTIGUOUS"]
    assert x.flags["WRITEABLE"] == y.flags["WRITEABLE"], (x.flags, y.flags)
    # Don't check for OWNDATA since it is always true for a GpuArray
    assert x.flags["ALIGNED"] == y.flags["ALIGNED"], (x.flags, y.flags)
    assert x.flags["WRITEBACKIFCOPY"] == y.flags["WRITEBACKIFCOPY"], (x.flags,
                                                                y.flags)


def check_meta_only(x, y):
    assert isinstance(x, gpuarray.GpuArray)
    assert x.shape == y.shape
    assert x.dtype == y.dtype
    if y.size != 0:
        assert x.strides == y.strides


def check_content(x, y):
    assert isinstance(x, gpuarray.GpuArray)
    assert numpy.allclose(numpy.asarray(x), numpy.asarray(y))


def check_meta(x, y):
    check_meta_only(x, y)
    check_flags(x, y)


def check_all(x, y):
    check_meta(x, y)
    check_content(x, y)


def check_meta_content(x, y):
    check_meta_only(x, y)
    check_content(x, y)


def gen_gpuarray(shape_orig, dtype='float32', offseted_outer=False,
                 offseted_inner=False, sliced=1, order='c', nozeros=False,
                 incr=0, ctx=None, cls=None):
    if sliced is True:
        sliced = 2
    elif sliced is False:
        sliced = 1
    shape = numpy.asarray(shape_orig).copy()
    if sliced != 1 and len(shape) > 0:
        shape[0] *= numpy.absolute(sliced)
    if offseted_outer and len(shape) > 0:
        shape[0] += 1
    if offseted_inner and len(shape) > 0:
        shape[-1] += 1

    low = 0.0
    if nozeros:
        low = 1.0

    a = numpy.random.uniform(low, 10.0, shape)
    a += incr

    a = numpy.asarray(a, dtype=dtype)
    b = gpuarray.array(a, context=ctx, cls=cls)
    assert order in ['c', 'f']
    if order == 'f' and len(shape) > 0:
        a = numpy.asfortranarray(a)
        b = gpuarray.asfortranarray(b)
    if order == 'f' and len(shape) > 0 and b.size > 1:
        assert b.flags['F_CONTIGUOUS']

    if offseted_outer and len(shape) > 0:
        b = b[1:]
        a = a[1:]
    if offseted_inner and len(shape) > 0:
        # The b[..., 1:] act as the test for this subtensor case.
        b = b[..., 1:]
        a = a[..., 1:]
    if sliced != 1 and len(shape) > 0:
        a = a[::sliced]
        b = b[::sliced]

    if False and shape_orig == ():
        assert a.shape == (1,)
        assert b.shape == (1,)
    else:
        assert a.shape == shape_orig, (a.shape, shape_orig)
        assert b.shape == shape_orig, (b.shape, shape_orig)

    assert numpy.allclose(a, numpy.asarray(b)), (a, numpy.asarray(b))

    return a, b