1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
from __future__ import print_function
import os
import sys
import unittest
from six.moves import range
from six import PY3
import pickle
import numpy as np
from pygpu import gpuarray
from pygpu.collectives import COMM_ID_BYTES, GpuCommCliqueId, GpuComm
from pygpu.tests.support import (check_all, gen_gpuarray, context as ctx)
def get_user_gpu_rank():
for name in ['GPUARRAY_TEST_DEVICE', 'DEVICE']:
if name in os.environ:
devname = os.environ[name]
if devname.startswith("opencl"):
return -1
if devname[-1] == 'a':
return 0
return int(devname[-1])
return -1
try:
from mpi4py import MPI
MPI_IMPORTED = True
except:
MPI_IMPORTED = False
print("mpi4py found: " + str(MPI_IMPORTED), file=sys.stderr)
@unittest.skipIf(get_user_gpu_rank() == -1, "Collective operations supported on CUDA devices only.")
class TestGpuCommCliqueId(unittest.TestCase):
def setUp(self):
self.cid = GpuCommCliqueId(context=ctx)
def _create_in_scope_from_string(self):
comm_id = bytearray(b'pipes' * (COMM_ID_BYTES // 5 + 1))
return GpuCommCliqueId(context=ctx, comm_id=comm_id)
def test_create_from_string_id(self):
cid2 = self._create_in_scope_from_string()
a = bytearray(b'pipes' * (COMM_ID_BYTES // 5 + 1))
assert cid2.comm_id == a[:COMM_ID_BYTES], (cid2.comm_id, a[:COMM_ID_BYTES])
b = bytearray(b'mlkies' * (COMM_ID_BYTES // 6 + 1))
cid2.comm_id = b
assert cid2.comm_id == b[:COMM_ID_BYTES], (cid2.comm_id, b[:COMM_ID_BYTES])
with self.assertRaises(ValueError):
cid2.comm_id = bytearray(b'testestestest')
def test_pickle(self):
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid)
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid, protocol=0)
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid, protocol=1)
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid, protocol=2)
if PY3:
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid, protocol=3)
with self.assertRaises(RuntimeError):
pickle.dumps(self.cid, protocol=-1)
def test_create_from_previous(self):
cid2 = GpuCommCliqueId(context=ctx, comm_id=bytearray(b'y' * COMM_ID_BYTES))
cid3 = GpuCommCliqueId(context=ctx, comm_id=cid2.comm_id)
assert cid2.comm_id == cid3.comm_id
def test_richcmp(self):
cid1 = GpuCommCliqueId(context=ctx, comm_id=bytearray(b'y' * COMM_ID_BYTES))
cid2 = GpuCommCliqueId(context=ctx, comm_id=cid1.comm_id)
cid3 = GpuCommCliqueId(context=ctx, comm_id=bytearray(b'z' * COMM_ID_BYTES))
assert cid1 == cid2
assert cid1 != cid3
assert cid3 > cid2
assert cid3 >= cid2
assert cid1 >= cid2
assert cid2 < cid3
assert cid2 <= cid3
assert cid2 <= cid1
with self.assertRaises(TypeError):
a = cid2 > "asdfasfa"
@unittest.skipUnless(MPI_IMPORTED, "Needs mpi4py module")
@unittest.skipIf(get_user_gpu_rank() == -1, "Collective operations supported on CUDA devices only")
class TestGpuComm(unittest.TestCase):
@classmethod
def setUpClass(cls):
if get_user_gpu_rank() == -1 or not MPI_IMPORTED:
return
cls.mpicomm = MPI.COMM_WORLD
cls.size = cls.mpicomm.Get_size()
cls.rank = cls.mpicomm.Get_rank()
cls.ctx = gpuarray.init("cuda" + str(cls.rank))
print("*** Collectives testing for", cls.ctx.devname, file=sys.stderr)
cls.cid = GpuCommCliqueId(context=cls.ctx)
cls.mpicomm.Bcast(cls.cid.comm_id, root=0)
cls.gpucomm = GpuComm(cls.cid, cls.size, cls.rank)
def test_count(self):
assert self.gpucomm.count == self.size, (self.gpucomm.count, self.size)
def test_rank(self):
assert self.gpucomm.rank == self.rank, (self.gpucomm.rank, self.rank)
def test_reduce(self):
cpu, gpu = gen_gpuarray((3, 4, 5), order='c', incr=self.rank, ctx=self.ctx)
rescpu = np.empty_like(cpu)
resgpu = gpu._empty_like_me()
if self.rank != 0:
self.gpucomm.reduce(gpu, 'sum', resgpu, root=0)
self.mpicomm.Reduce([cpu, MPI.FLOAT], None, op=MPI.SUM, root=0)
else:
self.gpucomm.reduce(gpu, 'sum', resgpu)
self.mpicomm.Reduce([cpu, MPI.FLOAT], [rescpu, MPI.FLOAT], op=MPI.SUM, root=0)
if self.rank == 0:
assert np.allclose(resgpu, rescpu)
resgpu = self.gpucomm.reduce(gpu, 'sum', root=0)
if self.rank == 0:
assert resgpu.shape == gpu.shape, (resgpu.shape, gpu.shape)
assert resgpu.dtype == gpu.dtype, (resgpu.dtype, gpu.dtype)
assert resgpu.flags['C'] == gpu.flags['C']
assert resgpu.flags['F'] == gpu.flags['F']
assert np.allclose(resgpu, rescpu)
else:
assert resgpu is None
if self.rank == 0:
resgpu = self.gpucomm.reduce(gpu, 'sum')
assert resgpu.shape == gpu.shape, (resgpu.shape, gpu.shape)
assert resgpu.dtype == gpu.dtype, (resgpu.dtype, gpu.dtype)
assert resgpu.flags['C'] == gpu.flags['C']
assert resgpu.flags['F'] == gpu.flags['F']
assert np.allclose(resgpu, rescpu)
else:
resgpu = self.gpucomm.reduce(gpu, 'sum', root=0)
assert resgpu is None
def test_all_reduce(self):
cpu, gpu = gen_gpuarray((3, 4, 5), order='c', incr=self.rank, ctx=self.ctx)
rescpu = np.empty_like(cpu)
resgpu = gpu._empty_like_me()
self.gpucomm.all_reduce(gpu, 'sum', resgpu)
self.mpicomm.Allreduce([cpu, MPI.FLOAT], [rescpu, MPI.FLOAT], op=MPI.SUM)
assert np.allclose(resgpu, rescpu)
resgpu = self.gpucomm.all_reduce(gpu, 'sum')
assert resgpu.shape == gpu.shape, (resgpu.shape, gpu.shape)
assert resgpu.dtype == gpu.dtype, (resgpu.dtype, gpu.dtype)
assert resgpu.flags['C'] == gpu.flags['C']
assert resgpu.flags['F'] == gpu.flags['F']
assert np.allclose(resgpu, rescpu)
def test_reduce_scatter(self):
texp = self.size * np.arange(5 * self.size) + sum(range(self.size))
exp = texp[self.rank * 5:self.rank * 5 + 5]
# order c
cpu = np.arange(5 * self.size) + self.rank
np.reshape(cpu, (self.size, 5), order='C')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = gpuarray.empty((5,), dtype='int64', order='C', context=self.ctx)
self.gpucomm.reduce_scatter(gpu, 'sum', resgpu)
assert np.allclose(resgpu, exp)
# order f
cpu = np.arange(5 * self.size) + self.rank
np.reshape(cpu, (5, self.size), order='F')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = gpuarray.empty((5,), dtype='int64', order='F', context=self.ctx)
self.gpucomm.reduce_scatter(gpu, 'sum', resgpu)
assert np.allclose(resgpu, exp)
# make result order c (one less dim)
cpu = np.arange(5 * self.size) + self.rank
np.reshape(cpu, (self.size, 5), order='C')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
check_all(resgpu, exp)
assert resgpu.flags['C_CONTIGUOUS'] is True
# c-contiguous split problem (for size == 1, it can always be split)
if self.size != 1:
cpu = np.arange(5 * (self.size + 1), dtype='int32') + self.rank
np.reshape(cpu, (self.size + 1, 5), order='C')
gpu = gpuarray.asarray(cpu, context=self.ctx)
with self.assertRaises(TypeError):
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
# make result order f (one less dim)
cpu = np.arange(5 * self.size) + self.rank
np.reshape(cpu, (5, self.size), order='F')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
check_all(resgpu, exp)
assert resgpu.flags['F_CONTIGUOUS'] is True
# f-contiguous split problem (for size == 1, it can always be split)
if self.size != 1:
cpu = np.arange(5 * (self.size + 1), dtype='int32') + self.rank
np.reshape(cpu, (5, self.size + 1), order='F')
gpu = gpuarray.asarray(cpu, context=self.ctx)
with self.assertRaises(TypeError):
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
# make result order c (same dim - less size)
texp = self.size * np.arange(5 * self.size * 3) + sum(range(self.size))
exp = texp[self.rank * 15:self.rank * 15 + 15]
np.reshape(exp, (3, 5), order='C')
cpu = np.arange(5 * self.size * 3) + self.rank
np.reshape(cpu, (self.size * 3, 5), order='C')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
check_all(resgpu, exp)
assert resgpu.flags['C_CONTIGUOUS'] is True
# make result order f (same dim - less size)
texp = self.size * np.arange(5 * self.size * 3) + sum(range(self.size))
exp = texp[self.rank * 15:self.rank * 15 + 15]
np.reshape(exp, (5, 3), order='F')
cpu = np.arange(5 * self.size * 3) + self.rank
np.reshape(cpu, (5, self.size * 3), order='F')
gpu = gpuarray.asarray(cpu, context=self.ctx)
resgpu = self.gpucomm.reduce_scatter(gpu, 'sum')
check_all(resgpu, exp)
assert resgpu.flags['F_CONTIGUOUS'] is True
def test_broadcast(self):
if self.rank == 0:
cpu, gpu = gen_gpuarray((3, 4, 5), order='c', incr=self.rank, ctx=self.ctx)
else:
cpu = np.zeros((3, 4, 5), dtype='float32')
gpu = gpuarray.asarray(cpu, context=self.ctx)
if self.rank == 0:
self.gpucomm.broadcast(gpu)
else:
self.gpucomm.broadcast(gpu, root=0)
self.mpicomm.Bcast(cpu, root=0)
assert np.allclose(gpu, cpu)
def test_all_gather(self):
texp = np.arange(self.size * 10, dtype='int32')
cpu = np.arange(self.rank * 10, self.rank * 10 + 10, dtype='int32')
a = cpu
gpu = gpuarray.asarray(a, context=self.ctx)
resgpu = self.gpucomm.all_gather(gpu, nd_up=0)
check_all(resgpu, texp)
a = cpu.reshape((2, 5), order='C')
exp = texp.reshape((2 * self.size, 5), order='C')
gpu = gpuarray.asarray(a, context=self.ctx)
resgpu = self.gpucomm.all_gather(gpu, nd_up=0)
check_all(resgpu, exp)
a = cpu.reshape((2, 5), order='C')
exp = texp.reshape((self.size, 2, 5), order='C')
gpu = gpuarray.asarray(a, context=self.ctx)
resgpu = self.gpucomm.all_gather(gpu, nd_up=1)
check_all(resgpu, exp)
a = cpu.reshape((2, 5), order='C')
exp = texp.reshape((self.size, 1, 1, 2, 5), order='C')
gpu = gpuarray.asarray(a, context=self.ctx)
resgpu = self.gpucomm.all_gather(gpu, nd_up=3)
check_all(resgpu, exp)
a = cpu.reshape((5, 2), order='F')
exp = texp.reshape((5, 2 * self.size), order='F')
gpu = gpuarray.asarray(a, context=self.ctx, order='F')
resgpu = self.gpucomm.all_gather(gpu, nd_up=0)
check_all(resgpu, exp)
a = cpu.reshape((5, 2), order='F')
exp = texp.reshape((5, 2, self.size), order='F')
gpu = gpuarray.asarray(a, context=self.ctx, order='F')
resgpu = self.gpucomm.all_gather(gpu, nd_up=1)
check_all(resgpu, exp)
a = cpu.reshape((5, 2), order='F')
exp = texp.reshape((5, 2, 1, 1, self.size), order='F')
gpu = gpuarray.asarray(a, context=self.ctx, order='F')
resgpu = self.gpucomm.all_gather(gpu, nd_up=3)
check_all(resgpu, exp)
with self.assertRaises(Exception):
resgpu = self.gpucomm.all_gather(gpu, nd_up=-2)
|