File: test_elemwise.py

package info (click to toggle)
libgpuarray 0.7.6-13
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,176 kB
  • sloc: ansic: 19,235; python: 4,591; makefile: 208; javascript: 71; sh: 15
file content (346 lines) | stat: -rw-r--r-- 11,508 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import operator
import numpy
from mako.template import Template

from unittest import TestCase
from pygpu import gpuarray, ndgpuarray as elemary
from pygpu.dtypes import dtype_to_ctype, get_common_dtype
from pygpu.elemwise import as_argument, ielemwise2
from pygpu._elemwise import GpuElemwise, arg

from six import PY2

from .support import (guard_devsup, context, gen_gpuarray, check_meta_content)

dtypes_test = ['float32', 'int8', 'uint64']

operators1 = [operator.neg, operator.pos, operator.abs]
operators2 = [operator.add, operator.sub, operator.floordiv,
              operator.mod, operator.mul, operator.truediv,
              operator.eq, operator.ne, operator.lt, operator.le,
              operator.gt, operator.ge]
if PY2:
    operators2.append(operator.div)

ioperators2 = [operator.iadd, operator.isub, operator.ifloordiv,
               operator.imod, operator.imul, operator.itruediv]
if PY2:
    ioperators2.append(operator.idiv)

elems = [2, 0.3, numpy.asarray(3, dtype='int8'),
         numpy.asarray(7, dtype='uint32'),
         numpy.asarray(2.45, dtype='float32')]


def test_elemwise1_ops_array():
    for op in operators1:
        for dtype in dtypes_test:
            elemwise1_ops_array(op, dtype)


@guard_devsup
def elemwise1_ops_array(op, dtype):
    c, g = gen_gpuarray((50,), dtype, ctx=context, cls=elemary)

    out_c = op(c)
    out_g = op(g)

    assert out_c.shape == out_g.shape
    assert out_c.dtype == out_g.dtype
    assert numpy.allclose(out_c, numpy.asarray(out_g))


def test_elemwise2_ops_array():
    for op in operators2:
        for dtype1 in dtypes_test:
            for dtype2 in dtypes_test:
                elemwise2_ops_array(op, dtype1, dtype2, (50,))


def test_ielemwise2_ops_array():
    for op in ioperators2:
        for dtype1 in dtypes_test:
            for dtype2 in dtypes_test:
                ielemwise2_ops_array(op, dtype1, dtype2, (50,))


class test_elemwise_output_not_broadcasted(TestCase):
    def test_all(self):
        test_values = [((1, 4), (6, 4)), ((2, 1, 8, 7), (2, 2, 8, 7))]
        for shapea, shapeb in test_values:
            # Sould fail: dimensions are not all equal.
            self.assertRaises(ValueError, self.run_ielemwise2, shapea, shapeb,
                              False)
            # Should fail: broascast should not be done on output.
            self.assertRaises(ValueError, self.run_ielemwise2, shapea, shapeb,
                              True)
            # Should fail: dimensions are not all equal.
            self.assertRaises(ValueError, self.check_elemwise2, shapeb, shapeb,
                              shapea, False)
            # Should fail: broadcast should not be done on output.
            self.assertRaises(ValueError, self.check_elemwise2, shapeb, shapeb,
                              shapea, True)
            # Should pass: output would be done on read-only input.
            self.run_ielemwise2(shapeb, shapea, broadcast=True)
            # Should pass: output would be done on read-only inputs.
            self.check_elemwise2(shapea, shapea, shapeb, broadcast=True)
            self.check_elemwise2(shapea, shapeb, shapeb, broadcast=True)
            self.check_elemwise2(shapeb, shapea, shapeb, broadcast=True)

    @guard_devsup
    def run_ielemwise2(self, shapea, shapeb, broadcast=True):
        na, ga = gen_gpuarray(shapea, ctx=context, cls=elemary)
        nb, gb = gen_gpuarray(shapeb, ctx=context, cls=elemary)
        ielemwise2(ga, '+', gb, broadcast=broadcast)
        na += nb
        assert numpy.allclose(na, numpy.asarray(ga), atol=1e-6)

    @guard_devsup
    def check_elemwise2(self, shapea, shapeb, output_shape, broadcast=True):
        # We rewrite this version of elemwise2 to skip the scaling of output
        # that is done in the official elemwise2 function.
        na, ga = gen_gpuarray(shapea, ctx=context, cls=elemary)
        nb, gb = gen_gpuarray(shapeb, ctx=context, cls=elemary)
        odtype = get_common_dtype(ga, gb, True)
        res = gpuarray.empty(output_shape, dtype=odtype, context=ga.context,
                             cls=ga.__class__)
        a_arg = as_argument(ga, 'a', read=True)
        b_arg = as_argument(gb, 'b', read=True)
        res_arg = as_argument(res, 'res', write=True)
        args = [res_arg, a_arg, b_arg]
        oper = "res = (%(out_t)s)a %(op)s (%(out_t)s)b" % {
            'op': '+', 'out_t': dtype_to_ctype(odtype)}
        k = GpuElemwise(ga.context, oper, args, convert_f16=True)
        k(res, ga, gb, broadcast=broadcast)
        nres = na + nb
        assert numpy.allclose(nres, numpy.asarray(res), atol=1e-6)


@guard_devsup
def elemwise2_ops_array(op, dtype1, dtype2, shape):
    ac, ag = gen_gpuarray(shape, dtype1, ctx=context, cls=elemary)
    bc, bg = gen_gpuarray(shape, dtype2, nozeros=True, ctx=context,
                          cls=elemary)

    out_c = op(ac, bc)
    out_g = op(ag, bg)

    assert out_c.shape == out_g.shape
    assert out_c.dtype == out_g.dtype
    assert numpy.allclose(out_c, numpy.asarray(out_g))


@guard_devsup
def ielemwise2_ops_array(op, dtype1, dtype2, shape):
    incr = 0
    if op == operator.isub and dtype1[0] == 'u':
        # array elements are smaller than 10 by default, so we avoid underflow
        incr = 10
    ac, ag = gen_gpuarray(shape, dtype1, incr=incr, ctx=context,
                          cls=elemary)
    bc, bg = gen_gpuarray(shape, dtype2, nozeros=True, ctx=context,
                          cls=elemary)

    try:
        out_c = op(ac, bc)
    except TypeError:
        # TODO: currently, we use old Numpy semantic and tolerate more case.
        # So we can't test that we raise the same error
        return
    out_g = op(ag, bg)

    assert out_g is ag
    assert numpy.allclose(out_c, numpy.asarray(out_g), atol=1e-6)


def test_elemwise_f16():
    elemwise1_ops_array(operator.neg, 'float16')
    elemwise2_ops_array(operator.add, 'float16', 'float16', (50,))
    ielemwise2_ops_array(operator.iadd, 'float16', 'float16', (50,))


def test_elemwise2_ops_mixed():
    for op in operators2:
        for dtype in dtypes_test:
            for elem in elems:
                elemwise2_ops_mixed(op, dtype, (50,), elem)


def test_ielemwise2_ops_mixed():
    for op in ioperators2:
        for dtype in dtypes_test:
            for elem in elems:
                ielemwise2_ops_mixed(op, dtype, (50,), elem)


@guard_devsup
def elemwise2_ops_mixed(op, dtype, shape, elem):
    c, g = gen_gpuarray(shape, dtype, ctx=context, cls=elemary)

    out_c = op(c, elem)
    out_g = op(g, elem)

    assert out_c.shape == out_g.shape
    assert out_c.dtype == out_g.dtype
    assert numpy.allclose(out_c, numpy.asarray(out_g))

    c, g = gen_gpuarray(shape, dtype, nozeros=True, ctx=context,
                        cls=elemary)
    out_c = op(elem, c)
    out_g = op(elem, g)

    assert out_c.shape == out_g.shape
    assert out_c.dtype == out_g.dtype
    assert numpy.allclose(out_c, numpy.asarray(out_g))


@guard_devsup
def ielemwise2_ops_mixed(op, dtype, shape, elem):
    incr = 0
    if op == operator.isub and dtype[0] == 'u':
        # array elements are smaller than 10 by default, so we avoid underflow
        incr = 10
    c, g = gen_gpuarray(shape, dtype, incr=incr, ctx=context,
                        cls=elemary)

    try:
        out_c = op(c, elem)
    except TypeError:
        # TODO: currently, we use old Numpy semantic and tolerate more case.
        # So we can't test that we raise the same error
        return
    out_g = op(g, elem)

    assert out_g is g
    assert out_c.shape == out_g.shape
    assert out_c.dtype == out_g.dtype
    assert numpy.allclose(out_c, numpy.asarray(out_g))


def test_divmod():
    for dtype1 in dtypes_test:
        for dtype2 in dtypes_test:
            divmod_array(dtype1, dtype2, (50,))
    for dtype in dtypes_test:
        for elem in elems:
            divmod_mixed(dtype, (50,), elem)


@guard_devsup
def divmod_array(dtype1, dtype2, shape):
    ac, ag = gen_gpuarray(shape, dtype1, ctx=context, cls=elemary)
    bc, bg = gen_gpuarray(shape, dtype2, nozeros=True, ctx=context,
                          cls=elemary)

    out_c = divmod(ac, bc)
    out_g = divmod(ag, bg)

    assert out_c[0].shape == out_g[0].shape
    assert out_c[1].shape == out_g[1].shape
    assert out_c[0].dtype == out_g[0].dtype
    assert out_c[1].dtype == out_g[1].dtype
    assert numpy.allclose(out_c[0], numpy.asarray(out_g[0]))
    assert numpy.allclose(out_c[1], numpy.asarray(out_g[1]))


@guard_devsup
def divmod_mixed(dtype, shape, elem):
    c, g = gen_gpuarray(shape, dtype, nozeros=True, ctx=context,
                        cls=elemary)

    out_c = divmod(c, elem)
    out_g = divmod(g, elem)

    assert out_c[0].shape == out_g[0].shape
    assert out_c[1].shape == out_g[1].shape
    assert out_c[0].dtype == out_g[0].dtype
    assert out_c[1].dtype == out_g[1].dtype
    assert numpy.allclose(out_c[0], numpy.asarray(out_g[0]))
    assert numpy.allclose(out_c[1], numpy.asarray(out_g[1]))

    out_c = divmod(elem, c)
    out_g = divmod(elem, g)

    assert out_c[0].shape == out_g[0].shape
    assert out_c[1].shape == out_g[1].shape
    assert out_c[0].dtype == out_g[0].dtype
    assert out_c[1].dtype == out_g[1].dtype
    assert numpy.allclose(out_c[0], numpy.asarray(out_g[0]))
    assert numpy.allclose(out_c[1], numpy.asarray(out_g[1]))


def test_elemwise_bool():
    a = gpuarray.empty((2,), context=context)
    exc = None
    try:
        bool(a)
    except ValueError as e:
        exc = e
    assert exc is not None
    a = gpuarray.zeros((1,), context=context)
    assert not bool(a)
    a = gpuarray.zeros((), context=context)
    assert not bool(a)


def test_broadcast():
    for shapea, shapeb in [((3, 5), (3, 5)),
                           ((1, 5), (3, 5)),
                           ((3, 5), (3, 1)),
                           ((1, 5), (3, 1)),
                           ((3, 1), (3, 5)),
                           ((3, 5), (3, 1)),
                           ((1, 1), (1, 1)),
                           ((3, 4, 5), (4, 5)),
                           ((4, 5), (3, 4, 5)),
                           ((), ())]:
        broadcast(shapea, shapeb)


def broadcast(shapea, shapeb):
    ac, ag = gen_gpuarray(shapea, 'float32', ctx=context, cls=elemary)
    bc, bg = gen_gpuarray(shapeb, 'float32', ctx=context, cls=elemary)

    rc = ac + bc
    rg = ag + bg

    check_meta_content(rg, rc)


_inf_preamb_tpl = Template('''
WITHIN_KERNEL ${flt}
infinity() {return INFINITY;}

WITHIN_KERNEL ${flt}
neg_infinity() {return -INFINITY;}
''')


def test_infinity():
    for dtype in ['float32', 'float64']:
        infinity(dtype)


@guard_devsup
def infinity(dtype):
    ac, ag = gen_gpuarray((2,), dtype, ctx=context, cls=elemary)
    out_g = ag._empty_like_me()
    flt = 'ga_float' if dtype == 'float32' else 'ga_double'
    out_arg = arg('out', out_g.dtype, scalar=False, read=False, write=True)
    preamble = _inf_preamb_tpl.render(flt=flt)

    # +infinity
    ac[:] = numpy.inf
    expr_inf = 'out = infinity()'
    kernel = GpuElemwise(context, expr_inf, [out_arg],
                         preamble=preamble)
    kernel(out_g)
    assert numpy.array_equal(ac, numpy.asarray(out_g))

    # -infinity
    ac[:] = -numpy.inf
    expr_neginf = 'out = neg_infinity()'
    kernel = GpuElemwise(context, expr_neginf, [out_arg],
                         preamble=preamble)
    kernel(out_g)
    assert numpy.array_equal(ac, numpy.asarray(out_g))