1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
|
from __future__ import print_function
import unittest
import copy
from six.moves import range
from six import PY3
import pickle
import numpy
import pytest
import pygpu
from pygpu.gpuarray import GpuArray, GpuKernel
from .support import (guard_devsup, check_meta, check_flags, check_all,
check_content, gen_gpuarray, context as ctx, dtypes_all,
dtypes_no_complex, skip_single_f)
def product(*args, **kwds):
# product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
# product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
pools = map(tuple, args) * kwds.get('repeat', 1)
result = [[]]
for pool in pools:
result = [x + [y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
def permutations(elements):
if len(elements) <= 1:
yield elements
else:
for perm in permutations(elements[1:]):
for i in range(len(elements)):
yield perm[:i] + elements[:1] + perm[i:]
def test_hash():
g = pygpu.empty((2, 3), context=ctx)
exc = None
try:
hash(g)
except TypeError as e:
exc = e
assert exc is not None
def test_bool():
for data in [numpy.empty((0, 33)), [[1]], [[0]], [], [0], [1], 0, 1]:
assert (bool(pygpu.asarray(data, context=ctx)) ==
bool(numpy.asarray(data)))
def test_transfer():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted in [True, False]:
transfer(shp, dtype, offseted)
def transfer(shp, dtype, offseted):
a, b = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
# Test that passing dtype doesn't break.
c = numpy.asarray(b, dtype=dtype)
c = numpy.asarray(b)
assert numpy.allclose(c, a)
assert a.shape == b.shape == c.shape
assert a.strides == b.strides == c.strides
assert a.dtype == b.dtype == c.dtype == dtype
assert c.flags.c_contiguous
def test_cast():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype1 in dtypes_no_complex:
for dtype2 in dtypes_no_complex:
cast(shp, dtype1, dtype2)
@guard_devsup
def cast(shp, dtype1, dtype2):
a, b = gen_gpuarray(shp, dtype1, False, ctx=ctx)
ac = a.astype(dtype2)
bc = b.astype(dtype2)
assert ac.dtype == bc.dtype
assert ac.shape == bc.shape
assert numpy.allclose(a, numpy.asarray(b))
def test_transfer_not_contiguous():
for shp in [(5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
transfer_not_contiguous(shp, dtype)
@guard_devsup
def transfer_not_contiguous(shp, dtype):
a = numpy.random.rand(*shp) * 10
b = pygpu.array(a, context=ctx)
a = a[::-1]
b = b[::-1]
c = numpy.asarray(b)
assert numpy.allclose(c, a)
assert a.shape == b.shape == c.shape
# the result array (c) is C contiguous
assert a.strides == b.strides == (-c.strides[0],) + c.strides[1:]
assert a.dtype == b.dtype == c.dtype
assert c.flags.c_contiguous
def test_transfer_fortran():
for shp in [(5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
transfer_fortran(shp, dtype)
@guard_devsup
def transfer_fortran(shp, dtype):
a = numpy.random.rand(*shp) * 10
b = pygpu.array(a, context=ctx)
a_ = numpy.asfortranarray(a)
if len(shp) > 1:
assert a_.strides != a.strides
a = a_
b = pygpu.asfortranarray(b)
c = numpy.asarray(b)
assert a.shape == b.shape == c.shape
assert a.dtype == b.dtype == c.dtype
assert a.flags.f_contiguous
assert c.flags.f_contiguous
assert a.strides == b.strides == c.strides
assert numpy.allclose(c, a)
def test_ascontiguousarray():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted_o in [True, False]:
for offseted_i in [True, True]:
for sliced in [1, 2, -1, -2]:
for order in ['f', 'c']:
ascontiguousarray(shp, dtype, offseted_o,
offseted_i, sliced, order)
@guard_devsup
def ascontiguousarray(shp, dtype, offseted_o, offseted_i, sliced, order):
cpu, gpu = gen_gpuarray(shp, dtype, offseted_o, offseted_i, sliced, order,
ctx=ctx)
a = numpy.ascontiguousarray(cpu)
b = pygpu.ascontiguousarray(gpu)
# numpy upcast with a view to 1d scalar.
if (sliced != 1 or shp == () or (offseted_i and len(shp) > 1)):
assert b is not gpu
if sliced == 1 and not offseted_i:
assert (a.data is cpu.data) == (b.bytes is gpu.bytes)
else:
assert b is gpu
assert a.shape == b.shape
assert a.dtype == b.dtype
assert a.flags.c_contiguous
assert b.flags['C_CONTIGUOUS']
assert a.strides == b.strides
assert numpy.allclose(cpu, a)
assert numpy.allclose(cpu, b)
def test_asfortranarray():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted_outer in [True, False]:
for offseted_inner in [True, False]:
for sliced in [1, 2, -1, -2]:
for order in ['f', 'c']:
asfortranarray(shp, dtype, offseted_outer,
offseted_inner, sliced, order)
@guard_devsup
def asfortranarray(shp, dtype, offseted_outer, offseted_inner, sliced, order):
cpu, gpu = gen_gpuarray(shp, dtype, offseted_outer, offseted_inner, sliced,
order, ctx=ctx)
a = numpy.asfortranarray(cpu)
b = pygpu.asfortranarray(gpu)
# numpy upcast with a view to 1d scalar.
if gpu.flags['F_CONTIGUOUS']:
assert ctx.kind != b'cuda' or b.gpudata == gpu.gpudata
elif (sliced != 1 or shp == () or (offseted_outer and len(shp) > 1) or
(order != 'f' and len(shp) > 1)):
assert b is not gpu
else:
assert b is gpu
assert a.shape == b.shape
assert a.dtype == b.dtype
assert a.flags.f_contiguous
assert b.flags['F_CONTIGUOUS']
if not any([s == 1 for s in cpu.shape]):
# Older version then Numpy 1.10 do not set c/f contiguous more
# frequently as we do. This cause extra copy.
assert a.strides == b.strides
assert numpy.allclose(cpu, a)
assert numpy.allclose(cpu, b)
def test_zeros():
for shp in [(), (0,), (5,),
(0, 0), (1, 0), (0, 1), (6, 7),
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(4, 8, 9), (1, 8, 9)]:
for order in ["C", "F"]:
for dtype in dtypes_all:
zeros(shp, order, dtype)
@guard_devsup
def zeros(shp, order, dtype):
x = pygpu.zeros(shp, dtype, order, context=ctx)
y = numpy.zeros(shp, dtype, order)
check_all(x, y)
def test_zeros_no_dtype():
# no dtype and order param
x = pygpu.zeros((), context=ctx)
y = numpy.zeros(())
check_meta(x, y)
def test_zero_noparam():
try:
pygpu.zeros()
assert False
except TypeError:
pass
def test_empty():
for shp in [(), (0,), (5,),
(0, 0), (1, 0), (0, 1), (6, 7),
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),
(4, 8, 9), (1, 8, 9)]:
for order in ["C", "F"]:
for dtype in dtypes_all:
empty(shp, order, dtype)
def empty(shp, order, dtype):
x = pygpu.empty(shp, dtype, order, context=ctx)
y = numpy.empty(shp, dtype, order)
check_meta(x, y)
def test_empty_no_dtype():
x = pygpu.empty((), context=ctx) # no dtype and order param
y = numpy.empty(())
check_meta(x, y)
def test_empty_no_params():
try:
pygpu.empty()
assert False
except TypeError:
pass
def test_mapping_getitem_ellipsis():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted in [True, False]:
mapping_getitem_ellipsis(shp, dtype, offseted)
def mapping_getitem_ellipsis(shp, dtype, offseted):
a, a_gpu = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
b = a_gpu[...]
if ctx.kind == b'cuda':
assert b.gpudata == a_gpu.gpudata
assert b.strides == a.strides
assert b.shape == a.shape
b_cpu = numpy.asarray(b)
assert numpy.allclose(a, b_cpu)
def test_getitem_none():
for shp in [(), (5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
getitem_none(shp)
def getitem_none(shp):
a, a_gpu = gen_gpuarray(shp, ctx=ctx)
assert numpy.allclose(a_gpu[..., None], a[..., None])
for _ in range(5):
# Choose something to slice with, always works
indcs = tuple(numpy.random.choice([0, slice(None), slice(1, None)],
size=len(shp)))
indcs = indcs[:1] + (None,) + indcs[1:]
assert numpy.allclose(a_gpu[indcs], a[indcs])
if shp:
assert numpy.allclose(a_gpu[1:, None], a[1:, None])
def test_mapping_setitem():
for shp in [(9,), (8, 9), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted in [True, False]:
mapping_setitem_ellipsis(shp, dtype, offseted)
mapping_setitem_ellipsis2(shp, dtype, offseted)
mapping_setitem_firstaxis(shp, dtype, offseted)
@guard_devsup
def mapping_setitem_ellipsis(shp, dtype, offseted):
a, a_gpu = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
a[...] = 2
a_gpu[...] = 2
assert numpy.allclose(a, numpy.asarray(a_gpu))
@guard_devsup
def mapping_setitem_ellipsis2(shp, dtype, offseted):
a, a_gpu = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
b, b_gpu = gen_gpuarray(shp[1:], dtype, False, ctx=ctx)
a[:] = b
a_gpu[:] = b_gpu
assert numpy.allclose(a, numpy.asarray(a_gpu))
@guard_devsup
def mapping_setitem_firstaxis(shp, dtype, offseted):
a, a_gpu = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
b, b_gpu = gen_gpuarray(shp[1:], dtype, False, ctx=ctx)
a[0] = b
a_gpu[0] = b_gpu
assert numpy.allclose(a, numpy.asarray(a_gpu))
class WriteReadTest(unittest.TestCase):
def setUp(self):
self.cpu, self.gpu = gen_gpuarray((3, 4, 5), ctx=ctx)
self.cpu[0, 0, 0] = 80
def test_write(self):
self.gpu.write(self.cpu)
res = numpy.asarray(self.gpu)
assert numpy.allclose(self.cpu, res)
self.cpu[0, 0, 0] = 160
self.cpu.setflags(write=False)
self.gpu.write(self.cpu)
res = numpy.asarray(self.gpu)
assert numpy.allclose(self.cpu, res)
self.cpu = numpy.ndarray((2, 4, 5), dtype="float32", order='C')
self.assertRaises(ValueError, self.gpu.write, self.cpu)
self.cpu = numpy.ndarray((3, 4, 5), dtype="float64", order='C')
self.assertRaises(ValueError, self.gpu.write, self.cpu)
cpu2 = numpy.random.random((3, 4, 5))
cpu2 = numpy.asarray(cpu2, dtype='float32', order='F')
self.gpu.write(cpu2)
res = numpy.asarray(self.gpu)
assert numpy.allclose(cpu2, res)
cpu2 = numpy.random.random((3, 4, 2, 5))
cpu2 = numpy.asarray(cpu2, dtype='float32', order='C')
self.gpu.write(cpu2[:, :, 0, :])
res = numpy.asarray(self.gpu)
assert numpy.allclose(cpu2[:, :, 0, :], res)
cpu2 = numpy.random.random((3, 4, 2, 5))
cpu2 = numpy.asarray(cpu2, dtype='float32', order='F')
self.gpu.write(cpu2[:, :, 0, :])
res = numpy.asarray(self.gpu)
assert numpy.allclose(cpu2[:, :, 0, :], res)
def test_read(self):
self.gpu.read(self.cpu)
res = numpy.asarray(self.gpu)
assert numpy.allclose(self.cpu, res)
self.cpu = numpy.ndarray((3, 4, 5), dtype="float32", order='C')
self.cpu.setflags(write=False)
self.assertRaises(ValueError, self.gpu.read, self.cpu)
self.cpu = numpy.ndarray((2, 4, 5), dtype="float32", order='C')
self.assertRaises(ValueError, self.gpu.read, self.cpu)
self.cpu = numpy.ndarray((3, 4, 5), dtype="float64", order='C')
self.assertRaises(ValueError, self.gpu.read, self.cpu)
self.cpu = numpy.ndarray((3, 4, 5), dtype="float32", order='F')
self.assertRaises(ValueError, self.gpu.read, self.cpu)
self.cpu = numpy.ndarray((3, 4, 2, 5), dtype="float32", order='C')
self.assertRaises(ValueError, self.gpu.read, self.cpu[:, :, 0, :])
def test_copy_view():
for shp in [(5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted in [False, True]:
# order1 is the order of the original data
for order1 in ['c', 'f']:
# order2 is the order wanted after copy
for order2 in ['c', 'f']:
copy_view(shp, dtype, offseted, order1, order2)
def check_memory_region(a, a_op, b, b_op):
assert (numpy.may_share_memory(a, a_op) ==
pygpu.gpuarray.may_share_memory(b, b_op))
@guard_devsup
def copy_view(shp, dtype, offseted, order1, order2):
# TODO test copy unbroadcast!
a, b = gen_gpuarray(shp, dtype, offseted, order=order1, ctx=ctx)
assert numpy.allclose(a, numpy.asarray(b))
check_flags(b, a)
c = b.copy(order2)
assert numpy.allclose(a, numpy.asarray(c))
check_flags(c, a.copy(order2))
check_memory_region(a, a.copy(order2), b, c)
d = copy.copy(b)
assert numpy.allclose(a, numpy.asarray(d))
check_flags(d, copy.copy(a))
check_memory_region(a, copy.copy(a), b, d)
e = b.view()
assert numpy.allclose(a, numpy.asarray(e))
check_flags(e, a.view())
check_memory_region(a, a.view(), b, e)
f = copy.deepcopy(b)
assert numpy.allclose(a, numpy.asarray(f))
check_flags(f, copy.deepcopy(a))
check_memory_region(a, copy.deepcopy(a), b, f)
g = copy.copy(b.view())
assert numpy.allclose(a, numpy.asarray(g))
check_memory_region(a, copy.copy(a.view()), b, g)
check_flags(g, copy.copy(a.view()))
def test_shape():
for shps in [((), (1,)), ((5,), (1, 5)), ((5,), (5, 1)), ((2, 3), (6,)),
((6,), (2, 3)), ((1,), ()),
((4,), (-1,)), ((4, 3), (-1,)),
((4, 3), (-1, 3)), ((4, 3), (4, -1)), ((4, 3), (3, -1)),
((4, 3), (12, -1)), ((4, 3), (-1, 12)),
((5, 4, 3, 2), (2, -1, 12)), ((4, 2), (2, 2, -1)),
# ((4, 3), (13, -1)),
]:
for offseted in [True, False]:
for order1 in ['c', 'f']:
if -1 not in shps[1]:
shape_(shps, offseted, order1)
for order2 in ['a', 'c', 'f']:
reshape(shps, offseted, order1, order2)
def shape_(shps, offseted, order):
ac, ag = gen_gpuarray(shps[0], 'float32', offseted, order=order, ctx=ctx)
try:
ac.shape = shps[1]
except AttributeError:
# If numpy says it can't be done, we don't try to test it
return
ag.shape = shps[1]
assert ac.strides == ag.strides, (ac.strides, ag.strides)
# np.allclose don't test shapes
assert ac.shape == ag.shape, (ac.shape, ag.shape)
assert numpy.allclose(ac, numpy.asarray(ag))
def reshape(shps, offseted, order1, order2):
ac, ag = gen_gpuarray(shps[0], 'float32', offseted, order=order1, ctx=ctx)
outc = ac.reshape(shps[1], order=order2)
outg = ag.reshape(shps[1], order=order2)
assert outc.shape == outg.shape
assert outc.strides == outg.strides
assert numpy.allclose(outc, numpy.asarray(outg))
def test_strides():
strides_((4, 4), 'c', 1, (4, 4))
strides_((4, 4), 'c', 1, (4, 16))
strides_((4, 4), 'c', 1, (16, 4))
strides_((4, 4), 'c', 1, (16, 8))
strides_((4, 4), 'c', 1, (16, 0))
strides_((4, 4), 'c', -1, (-20, 4))
strides_((4, 4), 'c', -1, (-12, 4))
def set_strides(a, newstr):
a.strides = newstr
def strides_(shp, order, sliced, newstr):
ac, ag = gen_gpuarray(shp, 'float32', sliced=sliced, order=order, ctx=ctx)
try:
ac.strides = newstr
except ValueError:
with pytest.raises(ValueError):
set_strides(ag, newstr)
return
ag.strides = newstr
check_flags(ag, ac)
assert numpy.allclose(ac, numpy.asarray(ag))
def test_transpose():
for shp in [(2, 3), (4, 8, 9), (1, 2, 3, 4)]:
for offseted in [True, False]:
for order in ['c', 'f']:
for sliced in [1, 2, -2, -1]:
transpose(shp, offseted, sliced, order)
for perm in permutations(list(range(len(shp)))):
transpose_perm(shp, perm, offseted, sliced,
order)
def transpose(shp, offseted, sliced, order):
ac, ag = gen_gpuarray(shp, 'float32', offseted, sliced=sliced,
order=order, ctx=ctx)
rc = ac.transpose()
rg = ag.transpose()
check_all(rg, rc)
# also check that we are exactly equal since this only a copy op
assert numpy.all(rc == numpy.asarray(rg))
# Test NumPy interface
rg = numpy.transpose(ag)
check_all(rg, rc)
# also check that we are exactly equal since this only a copy op
assert numpy.all(rc == numpy.asarray(rg))
def transpose_perm(shp, perm, offseted, sliced, order):
ac, ag = gen_gpuarray(shp, 'float32', offseted, sliced=sliced,
order=order, ctx=ctx)
rc = ac.transpose(perm)
rg = ag.transpose(perm)
check_all(rg, rc)
# also check that we are exactly equal since this only a copy op
assert numpy.all(rc == numpy.asarray(rg))
# Test NumPy interface
rg = numpy.transpose(ag, perm)
check_all(rg, rc)
# also check that we are exactly equal since this only a copy op
assert numpy.all(rc == numpy.asarray(rg))
def test_transpose_args():
ac, ag = gen_gpuarray((4, 3, 2), 'float32', ctx=ctx)
rc = ac.transpose(0, 2, 1)
rg = ag.transpose(0, 2, 1)
check_all(rg, rc)
# also check that we are exactly equal since this only a copy op
assert numpy.all(rc == numpy.asarray(rg))
def test_len():
for shp in [(5,), (6, 7), (4, 8, 9), (1, 8, 9)]:
for dtype in dtypes_all:
for offseted in [True, False]:
len_(shp, dtype, offseted)
def len_(shp, dtype, offseted):
a, a_gpu = gen_gpuarray(shp, dtype, offseted, ctx=ctx)
assert len(a_gpu) == shp[0]
def test_mapping_getitem_w_int():
for dtype in dtypes_all:
for offseted in [True, False]:
mapping_getitem_w_int(dtype, offseted)
@guard_devsup
def mapping_getitem_w_int(dtype, offseted):
# test vector
dim = (2,)
a, _a = gen_gpuarray(dim, dtype, offseted, ctx=ctx)
_cmp(_a[...], a[...])
_cmp(_a[...], a[...])
_cmp(_a[...], a[...])
_cmp(_a[...], a[...])
_cmp(_a[...], a[...])
_cmp(_a[-1], a[-1])
_cmp(_a[1], a[1])
_cmp(_a[0], a[0])
_cmp(_a[::1], a[::1])
_cmpNs(_a[::-1], a[::-1])
_cmp(_a[...], a[...])
_cmpf(_a, 2)
# test scalar
dim = ()
a, _a = gen_gpuarray(dim, dtype, offseted, ctx=ctx)
_cmp(_a[...], a[...])
_cmpf(_a, 0)
_cmpf(_a, slice(1))
# test 4d-tensor
dim = (5, 4, 3, 2)
a, _a = gen_gpuarray(dim, dtype, offseted, ctx=ctx)
_cmpf(_a, slice(-1), slice(-1), 10, -10)
_cmpf(_a, slice(-1), slice(-1), -10, slice(-1))
_cmpf(_a, 0, slice(0, -1, -20), -10)
_cmpf(_a, 10)
_cmpf(_a, (10, 0, 0, 0))
_cmpf(_a, -10)
# test with integer
_cmp(_a[1], a[1])
_cmp(_a[-1], a[-1])
_cmp(_a[numpy.int64(1)], a[numpy.int64(1)])
_cmp(_a[numpy.int64(-1)], a[numpy.int64(-1)])
# test with slice
_cmp(_a[1:], a[1:])
_cmp(_a[1:2], a[1:2])
_cmp(_a[-1:1], a[-1:1])
_cmp(_a[6:7:], a[6:7:])
# test with tuple (mix slice, integer, numpy.int64)
_cmpNs(_a[0, 0, ::numpy.int64(-1), ::-1], a[0, 0, ::-1, ::-1])
_cmpNs(_a[:, :, ::numpy.int64(-1), ::-1], a[:, :, ::-1, ::-1])
_cmpNs(_a[:, :, numpy.int64(1), -1], a[:, :, 1, -1])
_cmpNs(_a[:, :, ::-1, ::-1], a[:, :, ::-1, ::-1])
_cmpNs(_a[:, :, ::-10, ::-10], a[:, :, ::-10, ::-10])
_cmpNs(_a[:, :, 1, -1], a[:, :, 1, -1])
_cmpNs(_a[:, :, -1, :], a[:, :, -1, :])
_cmpNs(_a[:, ::-2, -1, :], a[:, ::-2, -1, :])
_cmpNs(_a[:, ::-20, -1, :], a[:, ::-20, -1, :])
_cmpNs(_a[:, ::-2, -1], a[:, ::-2, -1])
_cmpNs(_a[0, ::-2, -1], a[0, ::-2, -1])
_cmp(_a[-1, -1, -1, -2], a[-1, -1, -1, -2])
# test ellipse
_cmp(_a[...], a[...])
def _cmp(x, y):
assert isinstance(x, GpuArray)
assert x.shape == y.shape
assert x.dtype == y.dtype
assert x.strides == y.strides
assert x.flags["C_CONTIGUOUS"] == y.flags["C_CONTIGUOUS"], (x.flags,
y.flags)
if y.size == 0:
# F_CONTIGUOUS flags change definition with different numpy version
# TODO: ideally, we should be F_CONTIGUOUS in that case.
pass
elif not (skip_single_f and y.shape == ()):
assert x.flags["F_CONTIGUOUS"] == y.flags["F_CONTIGUOUS"], (x.flags,
y.flags)
else:
assert x.flags["F_CONTIGUOUS"]
# GpuArrays always own their data so don't check that flag.
if x.flags["WRITEABLE"] != y.flags["WRITEABLE"]:
assert x.ndim == 0
assert x.flags["ALIGNED"] == y.flags["ALIGNED"], (x.flags, y.flags)
assert x.flags["WRITEBACKIFCOPY"] == y.flags["WRITEBACKIFCOPY"], (x.flags,
y.flags)
x = numpy.asarray(x)
assert x.shape == y.shape
assert x.dtype == y.dtype
assert (x.strides == y.strides) or ((0 in x.shape) and all(s0==0 for s0 in x.strides))
if not numpy.all(x == y):
print(x)
print(y)
assert numpy.all(x == y), (x, y)
def _cmpNs(x, y):
"""
Don't compare the stride after the transfer
There is a copy that have been made on the gpu before the transfer
"""
assert x.shape == y.shape
assert x.dtype == y.dtype
assert x.strides == y.strides
assert x.flags["C_CONTIGUOUS"] == y.flags["C_CONTIGUOUS"]
assert x.flags["F_CONTIGUOUS"] == y.flags["F_CONTIGUOUS"]
assert x.flags["WRITEABLE"] == y.flags["WRITEABLE"]
assert x.flags["ALIGNED"] == y.flags["ALIGNED"]
# we don't check owndata since it is always true for GpuArrays
assert x.flags["WRITEBACKIFCOPY"] == y.flags["WRITEBACKIFCOPY"]
x_ = numpy.asarray(x)
assert x_.shape == y.shape
assert x_.dtype == y.dtype
assert numpy.all(x_ == y), (x_, y)
def _cmpf(x, *y):
try:
x.__getitem__(y)
except IndexError:
pass
else:
raise Exception("Did not generate out or bound error")
def _cmpfV(x, *y):
try:
if len(y) == 1:
x.__getitem__(*y)
else:
x.__getitem__(y)
except ValueError:
pass
else:
raise Exception("Did not generate value error")
def test_take1():
do_take1((4, 3), [2, 0], False)
do_take1((4, 3), [2, 0], True)
do_take1((12, 4, 3), [1, 1, 1, 1, 1, 2, 2, 3, 3, 0, 0, 9], False)
def do_take1(shp, idx, offseted):
c, g = gen_gpuarray(shp, dtype='float32', ctx=ctx, order='c')
ci = numpy.asarray(idx)
gi = pygpu.asarray(ci, context=ctx)
rc = c.take(ci, axis=0)
rg = g.take1(gi)
check_content(rg, rc)
def test_flags():
for fl in ['C', 'F', 'W', 'B', 'O', 'A', 'X', 'CA', 'FA', 'FNC', 'FORC',
'CARRAY', 'FARRAY', 'FORTRAN', 'BEHAVED', 'OWNDATA', 'ALIGNED',
'WRITEABLE', 'CONTIGUOUS', 'WRITEBACKIFCOPY', 'C_CONTIGUOUS',
'F_CONTIGUOUS']:
flag_dict(fl)
for p in ['c_contiguous', 'f_contiguous', 'contiguous', 'fortran',
'writebackifcopy', 'owndata', 'aligned', 'writeable', 'behaved',
'carray', 'forc', 'fnc', 'farray']:
flag_prop(p)
def flag_dict(fl):
c2, g2 = gen_gpuarray((2, 3), dtype='float32', ctx=ctx, order='c')
c3, g3 = gen_gpuarray((2, 3), dtype='float32', ctx=ctx, order='f')
assert c2.flags[fl] == g2.flags[fl]
assert c3.flags[fl] == g3.flags[fl]
def flag_prop(p):
c2, g2 = gen_gpuarray((2, 3), dtype='float32', ctx=ctx, order='c')
c3, g3 = gen_gpuarray((2, 3), dtype='float32', ctx=ctx, order='f')
assert getattr(c2.flags, p) == getattr(g2.flags, p)
assert getattr(c3.flags, p) == getattr(g3.flags, p)
class TestPickle(unittest.TestCase):
def test_GpuArray(self):
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx))
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx), protocol=0)
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx), protocol=1)
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx), protocol=2)
if PY3:
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx), protocol=3)
with self.assertRaises(RuntimeError):
pickle.dumps(pygpu.zeros((32,), context=ctx), protocol=-1)
def test_GpuContext(self):
with self.assertRaises(RuntimeError):
pickle.dumps(ctx)
with self.assertRaises(RuntimeError):
pickle.dumps(ctx, protocol=0)
with self.assertRaises(RuntimeError):
pickle.dumps(ctx, protocol=1)
with self.assertRaises(RuntimeError):
pickle.dumps(ctx, protocol=2)
if PY3:
with self.assertRaises(RuntimeError):
pickle.dumps(ctx, protocol=3)
with self.assertRaises(RuntimeError):
pickle.dumps(ctx, protocol=-1)
def test_GpuKernel(self):
k = GpuKernel("#include \"cluda.h\"\nKERNEL void "
"k(GLOBAL_MEM ga_float *in)"
"{in[0] = 0;}", "k", [], context=ctx)
with self.assertRaises(RuntimeError):
pickle.dumps(k)
with self.assertRaises(RuntimeError):
pickle.dumps(k, protocol=0)
with self.assertRaises(RuntimeError):
pickle.dumps(k, protocol=1)
with self.assertRaises(RuntimeError):
pickle.dumps(k, protocol=2)
if PY3:
with self.assertRaises(RuntimeError):
pickle.dumps(k, protocol=3)
with self.assertRaises(RuntimeError):
pickle.dumps(k, protocol=-1)
|