1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
|
from libc.stdlib cimport malloc, calloc, free
from libc.string cimport memcmp
from cpython cimport Py_buffer, Py_INCREF, Py_DECREF
from cpython.buffer cimport PyBUF_FORMAT, PyBUF_ND, PyBUF_STRIDES
from pygpu.gpuarray cimport (gpucontext, GpuContext, _GpuArray, GpuArray,
ensure_context,
GA_NO_ERROR, get_exc, gpucontext_error,
GpuArray_IS_C_CONTIGUOUS,
GA_C_ORDER, GA_F_ORDER, GA_ANY_ORDER,
pygpu_empty_like, pygpu_empty, memcpy)
from pygpu.gpuarray import GpuArrayException
COMM_ID_BYTES = GA_COMM_ID_BYTES
cdef class GpuCommCliqueId:
"""GpuCommCliqueId(context=None, comm_id=None)
Represents a unique id shared among :class:`GpuComm` communicators which
participate in a multi-gpu clique.
Parameters
----------
context: GpuContext
Reference to which gpu this GpuCommCliqueId object belongs.
comm_id: bytes
Existing unique id to be passed in this object.
"""
def __cinit__(self, GpuContext context=None, unsigned char[:] comm_id=None):
self.context = ensure_context(context)
if comm_id is None:
comm_generate_id(self.context.ctx, &self.c_comm_id)
def __init__(self, GpuContext context=None, unsigned char[:] comm_id=None):
if comm_id is not None:
self.comm_id = comm_id
def __richcmp__(this, that, int op):
if type(this) != type(that):
raise TypeError, "Cannot compare %s with %s" % (type(this), type(that))
cdef int res
cdef GpuCommCliqueId a
a = this
cdef GpuCommCliqueId b
b = that
res = memcmp(<void*>a.c_comm_id.internal, <void*>b.c_comm_id.internal, GA_COMM_ID_BYTES)
if op == 0:
return res < 0
elif op == 1:
return res <= 0
elif op == 2:
return res == 0
elif op == 3:
return res != 0
elif op == 4:
return res > 0
else:
return res >= 0
def __hash__(self):
return hash(self.__class__.__name__) ^ hash(self.c_comm_id.internal[:GA_COMM_ID_BYTES])
def __reduce__(self):
raise RuntimeError, "Cannot pickle %s object" % self.__class__.__name__
property comm_id:
"Unique clique id to be used by each :class:`GpuComm` in a group of devices"
def __get__(self):
cdef bytearray res
res = self.c_comm_id.internal[:GA_COMM_ID_BYTES]
return res
def __set__(self, unsigned char[:] cid):
cdef int length
length = cid.shape[0]
if length < GA_COMM_ID_BYTES:
raise ValueError, "GpuComm clique id must have length %d bytes" % (GA_COMM_ID_BYTES)
memcpy(self.c_comm_id.internal, <char*>&cid[0], GA_COMM_ID_BYTES)
cdef class GpuComm:
"""GpuComm(cid, ndev, rank)
Represents a communicator which participates in a multi-gpu clique.
It is used to invoke collective operations to gpus inside its clique.
Parameters
----------
cid: GpuCommCliqueId
Unique id shared among participating communicators.
ndev: int
Number of communicators inside the clique.
rank: int
User-defined rank of this communicator inside the clique. It
influences order of collective operations.
"""
def __dealloc__(self):
gpucomm_free(self.c)
def __cinit__(self, GpuCommCliqueId cid not None, int ndev, int rank):
cdef int err
err = gpucomm_new(&self.c, cid.context.ctx, cid.c_comm_id, ndev, rank)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(cid.context.ctx, err)
def __reduce__(self):
raise RuntimeError, "Cannot pickle %s object" % self.__class__.__name__
property count:
"Total number of communicators inside the clique"
def __get__(self):
cdef int gpucount
comm_get_count(self, &gpucount)
return gpucount
property rank:
"User-defined rank of this communicator inside the clique"
def __get__(self):
cdef int gpurank
comm_get_rank(self, &gpurank)
return gpurank
def reduce(self, GpuArray src not None, op, GpuArray dest=None,
int root=-1):
"""
reduce(self, src, op, dest=None, root=-1)
Reduce collective operation for ranks in a communicator world.
Parameters
----------
src: GpuArray
Array to be reduced.
op: str
Key indicating operation type.
dest: GpuArray
Array to collect reduce operation result.
root: int
Rank in GpuComm which will collect result.
Notes
-----
* `root` is necessary when invoking from a non-root rank. Root
caller does not need to provide `root` argument.
* Not providing `dest` argument for a root caller will result
in creating a new compatible :class:`GpuArray` and returning
result in it.
"""
cdef int srank
if dest is None:
if root != -1:
comm_get_rank(self, &srank)
if root == srank:
return pygpu_make_reduced(self, src, to_reduce_opcode(op))
comm_reduce_from(self, src, to_reduce_opcode(op), root)
return
else:
return pygpu_make_reduced(self, src, to_reduce_opcode(op))
if root == -1:
comm_get_rank(self, &root)
comm_reduce(self, src, dest, to_reduce_opcode(op), root)
def all_reduce(self, GpuArray src not None, op, GpuArray dest=None):
"""
all_reduce(self, src, op, dest=None)
AllReduce collective operation for ranks in a communicator world.
Parameters
----------
src: GpuArray
Array to be reduced.
op: str
Key indicating operation type.
dest: GpuArray
Array to collect reduce operation result.
Notes
-----
* Not providing `dest` argument for a caller will result in creating
a new compatible :class:`GpuArray` and returning result in it.
"""
if dest is None:
return pygpu_make_all_reduced(self, src, to_reduce_opcode(op))
comm_all_reduce(self, src, dest, to_reduce_opcode(op))
def reduce_scatter(self, GpuArray src not None, op, GpuArray dest=None):
"""
reduce_scatter(self, src, op, dest=None)
ReduceScatter collective operation for ranks in a communicator world.
Parameters
----------
src: GpuArray
Array to be reduced.
op: str
Key indicating operation type.
dest: GpuArray
Array to collect reduce operation scattered result.
Notes
-----
* Not providing `dest` argument for a caller will result in creating
a new compatible :class:`GpuArray` and returning result in it.
"""
if dest is None:
return pygpu_make_reduce_scattered(self, src, to_reduce_opcode(op))
comm_reduce_scatter(self, src, dest, to_reduce_opcode(op))
def broadcast(self, GpuArray array not None, int root=-1):
"""
broadcast(self, array, root=-1)
Broadcast collective operation for ranks in a communicator world.
Parameters
----------
array: GpuArray
Array to be reduced.
root: int
Rank in `GpuComm` which broadcasts its `array`.
Notes
-----
* `root` is necessary when invoking from a non-root rank. Root caller
does not need to provide `root` argument.
"""
if root == -1:
comm_get_rank(self, &root)
comm_broadcast(self, array, root)
def all_gather(self, GpuArray src not None, GpuArray dest=None,
unsigned int nd_up=1):
"""
all_gather(self, src, dest=None, nd_up=1)
AllGather collective operation for ranks in a communicator world.
Parameters
----------
src: GpuArray
Array to be gathered.
dest: GpuArray
Array to receive all gathered arrays from ranks in `GpuComm`.
nd_up: int
Used when creating result array. Indicates how many extra
dimensions user wants result to have. Default is 1, which
means that the result will store each rank's gathered
array in one extra new dimension.
Notes
-----
* Providing `nd_up` == 0 means that gathered arrays will be appended to
the dimension with the largest stride.
"""
if dest is None:
return pygpu_make_all_gathered(self, src, nd_up)
comm_all_gather(self, src, dest)
cdef dict TO_RED_OP = {
'+': GA_SUM,
"sum": GA_SUM,
"add": GA_SUM,
'*': GA_PROD,
"prod": GA_PROD,
"product": GA_PROD,
"mul": GA_PROD,
"max": GA_MAX,
"maximum": GA_MAX,
"min": GA_MIN,
"minimum": GA_MIN,
}
cdef int to_reduce_opcode(op) except -1:
res = TO_RED_OP.get(op.lower())
if res is not None:
return res
raise ValueError, "Invalid reduce operation: %s" % (str(op))
cdef gpucontext* comm_context(GpuComm comm) except NULL:
cdef gpucontext* res
res = gpucomm_context(comm.c)
if res is NULL:
raise GpuArrayException, "Invalid communicator or destroyed context"
return res
cdef int comm_generate_id(gpucontext* ctx, gpucommCliqueId* comm_id) except -1:
cdef int err
err = gpucomm_gen_clique_id(ctx, comm_id)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(ctx, err)
cdef int comm_get_count(GpuComm comm, int* gpucount) except -1:
cdef int err
err = gpucomm_get_count(comm.c, gpucount)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_get_rank(GpuComm comm, int* gpurank) except -1:
cdef int err
err = gpucomm_get_rank(comm.c, gpurank)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_reduce_from(GpuComm comm, GpuArray src, int opcode,
int root) except -1:
cdef int err
err = GpuArray_reduce_from(&src.ga, opcode, root, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_reduce(GpuComm comm, GpuArray src, GpuArray dest, int opcode,
int root) except -1:
cdef int err
err = GpuArray_reduce(&src.ga, &dest.ga, opcode, root, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_all_reduce(GpuComm comm, GpuArray src, GpuArray dest,
int opcode) except -1:
cdef int err
err = GpuArray_all_reduce(&src.ga, &dest.ga, opcode, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_reduce_scatter(GpuComm comm, GpuArray src, GpuArray dest,
int opcode) except -1:
cdef int err
err = GpuArray_reduce_scatter(&src.ga, &dest.ga, opcode, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_broadcast(GpuComm comm, GpuArray arr, int root) except -1:
cdef int err
err = GpuArray_broadcast(&arr.ga, root, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef int comm_all_gather(GpuComm comm, GpuArray src, GpuArray dest) except -1:
cdef int err
err = GpuArray_all_gather(&src.ga, &dest.ga, comm.c)
if err != GA_NO_ERROR:
raise get_exc(err), gpucontext_error(comm_context(comm), err)
cdef api GpuArray pygpu_make_reduced(GpuComm comm, GpuArray src, int opcode):
cdef GpuArray res
res = pygpu_empty_like(src, GA_ANY_ORDER, -1)
cdef int rank
comm_get_rank(comm, &rank)
comm_reduce(comm, src, res, opcode, rank)
return res
cdef api GpuArray pygpu_make_all_reduced(GpuComm comm, GpuArray src, int opcode):
cdef GpuArray res
res = pygpu_empty_like(src, GA_ANY_ORDER, -1)
comm_all_reduce(comm, src, res, opcode)
return res
cdef api GpuArray pygpu_make_reduce_scattered(GpuComm comm, GpuArray src, int opcode):
if src.ga.nd < 1:
raise TypeError, "Source GpuArray must have number of dimensions >= 1"
cdef GpuArray res
cdef int gpucount
cdef bint is_c_cont
cdef unsigned int nd
cdef size_t chosen_dim_size
cdef size_t* dims
cdef unsigned int j
comm_get_count(comm, &gpucount)
is_c_cont = GpuArray_IS_C_CONTIGUOUS(&src.ga)
nd = src.ga.nd
dims = <size_t*>calloc(nd, sizeof(size_t))
if dims == NULL:
raise MemoryError, "Could not allocate dims"
try:
if is_c_cont:
# Smallest in index dimension has the largest stride
if src.ga.dimensions[0] % gpucount == 0:
chosen_dim_size = src.ga.dimensions[0] / gpucount
if chosen_dim_size != 1:
dims[0] = chosen_dim_size
for j in range(1, nd):
dims[j] = src.ga.dimensions[j]
else:
for j in range(nd - 1):
dims[j] = src.ga.dimensions[1 + j]
nd -= 1
else:
raise TypeError, "Source GpuArray cannot be split in %d c-contiguous arrays" % (gpucount)
else:
# Largest in index dimension has the largest stride
if src.ga.dimensions[nd - 1] % gpucount == 0:
chosen_dim_size = src.ga.dimensions[nd - 1] / gpucount
for j in range(nd - 1):
dims[j] = src.ga.dimensions[j]
if chosen_dim_size != 1:
dims[nd - 1] = chosen_dim_size
else:
nd -= 1
else:
raise TypeError, "Source GpuArray cannot be split in %d f-contiguous arrays" % (gpucount)
res = pygpu_empty(nd, dims, src.ga.typecode,
GA_C_ORDER if is_c_cont else GA_F_ORDER,
src.context, type(src))
comm_reduce_scatter(comm, src, res, opcode)
finally:
free(dims)
return res
cdef api GpuArray pygpu_make_all_gathered(GpuComm comm, GpuArray src,
unsigned int nd_up):
if src.ga.nd < 1:
raise TypeError, "Source GpuArray must have number of dimensions >= 1"
cdef GpuArray res
cdef int gpucount
cdef bint is_c_cont
cdef unsigned int nd
cdef size_t* dims
cdef unsigned int j
comm_get_count(comm, &gpucount)
is_c_cont = GpuArray_IS_C_CONTIGUOUS(&src.ga)
nd = src.ga.nd + nd_up
dims = <size_t*>calloc(nd, sizeof(size_t))
if dims == NULL:
raise MemoryError, "Could not allocate dims"
try:
if is_c_cont:
# Smallest in index dimension has the largest stride
if nd_up == 0:
dims[0] = <size_t>gpucount * src.ga.dimensions[0]
for j in range(1, nd):
dims[j] = src.ga.dimensions[j]
else:
dims[0] = <size_t>gpucount
for j in range(1, nd_up):
dims[j] = 1
for j in range(src.ga.nd):
dims[nd_up + j] = src.ga.dimensions[j]
else:
# Largest in index dimension has the largest stride
if nd_up == 0:
dims[nd - 1] = <size_t>gpucount * src.ga.dimensions[nd - 1]
for j in range(nd - 1):
dims[j] = src.ga.dimensions[j]
else:
dims[nd - 1] = <size_t>gpucount
for j in range(nd_up - 1):
dims[src.ga.nd + j] = 1
for j in range(src.ga.nd):
dims[j] = src.ga.dimensions[j]
res = pygpu_empty(nd, dims, src.ga.typecode,
GA_C_ORDER if is_c_cont else GA_F_ORDER,
src.context, type(src))
comm_all_gather(comm, src, res)
finally:
free(dims)
return res
|