1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
|
#############################################################################
# Find paths from node to node in a Manhattan-style grid via A*.
#
# (c) by Tels - part of Graph::Easy
#############################################################################
package Graph::Easy::Layout::Scout;
$VERSION = '0.76';
#############################################################################
#############################################################################
package Graph::Easy;
use strict;
use warnings;
use Graph::Easy::Node::Cell;
use Graph::Easy::Edge::Cell qw/
EDGE_SHORT_E EDGE_SHORT_W EDGE_SHORT_N EDGE_SHORT_S
EDGE_SHORT_BD_EW EDGE_SHORT_BD_NS
EDGE_SHORT_UN_EW EDGE_SHORT_UN_NS
EDGE_START_E EDGE_START_W EDGE_START_N EDGE_START_S
EDGE_END_E EDGE_END_W EDGE_END_N EDGE_END_S
EDGE_N_E EDGE_N_W EDGE_S_E EDGE_S_W
EDGE_N_W_S EDGE_S_W_N EDGE_E_S_W EDGE_W_S_E
EDGE_LOOP_NORTH EDGE_LOOP_SOUTH EDGE_LOOP_WEST EDGE_LOOP_EAST
EDGE_HOR EDGE_VER EDGE_HOLE
EDGE_S_E_W EDGE_N_E_W EDGE_E_N_S EDGE_W_N_S
EDGE_LABEL_CELL
EDGE_TYPE_MASK
EDGE_ARROW_MASK
EDGE_FLAG_MASK
EDGE_START_MASK
EDGE_END_MASK
EDGE_NO_M_MASK
/;
#############################################################################
# mapping edge type (HOR, VER, NW etc) and dx/dy to startpoint flag
my $start_points = {
# [ dx == 1, dx == -1, dy == 1, dy == -1 ,
# dx == 1, dx == -1, dy == 1, dy == -1 ]
EDGE_HOR() => [ EDGE_START_W, EDGE_START_E, 0, 0 ,
EDGE_END_E, EDGE_END_W, 0, 0, ],
EDGE_VER() => [ 0, 0, EDGE_START_N, EDGE_START_S ,
0, 0, EDGE_END_S, EDGE_END_N, ],
EDGE_N_E() => [ 0, EDGE_START_E, EDGE_START_N, 0 ,
EDGE_END_E, 0, 0, EDGE_END_N, ],
EDGE_N_W() => [ EDGE_START_W, 0, EDGE_START_N, 0 ,
0, EDGE_END_W, 0, EDGE_END_N, ],
EDGE_S_E() => [ 0, EDGE_START_E, 0, EDGE_START_S ,
EDGE_END_E, 0, EDGE_END_S, 0, ],
EDGE_S_W() => [ EDGE_START_W, 0, 0, EDGE_START_S ,
0, EDGE_END_W, EDGE_END_S, 0, ],
};
my $start_to_end = {
EDGE_START_W() => EDGE_END_W(),
EDGE_START_E() => EDGE_END_E(),
EDGE_START_S() => EDGE_END_S(),
EDGE_START_N() => EDGE_END_N(),
};
sub _end_points
{
# modify last field of path to be the correct endpoint; and the first field
# to be the correct startpoint:
my ($self, $edge, $coords, $dx, $dy) = @_;
return $coords if $edge->undirected();
# there are two cases (for each dx and dy)
my $i = 0; # index 0,1
my $co = 2;
my $case;
for my $d ($dx,$dy,$dx,$dy)
{
next if $d == 0;
my $type = $coords->[$co] & EDGE_TYPE_MASK;
$case = 0; $case = 1 if $d == -1;
# modify first/last cell
my $t = $start_points->{ $type }->[ $case + $i ];
# on bidirectional edges, turn START_X into END_X
$t = $start_to_end->{$t} || $t if $edge->{bidirectional};
$coords->[$co] += $t;
} continue {
$i += 2; # index 2,3, 4,5 etc
$co = -1 if $i == 4; # modify now last cell
}
$coords;
}
sub _find_path
{
# Try to find a path between two nodes. $options contains direction
# preferences. Returns a list of cells like:
# [ $x,$y,$type, $x1,$y1,$type1, ...]
my ($self, $src, $dst, $edge) = @_;
# one node pointing back to itself?
if ($src == $dst)
{
my $rc = $self->_find_path_loop($src,$edge);
return $rc unless scalar @$rc == 0;
}
# If one of the two nodes is bigger than 1 cell, use _find_path_astar(),
# because it automatically handles all the possibilities:
return $self->_find_path_astar($edge)
if ($src->is_multicelled() || $dst->is_multicelled() || $edge->has_ports());
my ($x0, $y0) = ($src->{x}, $src->{y});
my ($x1, $y1) = ($dst->{x}, $dst->{y});
my $dx = ($x1 - $x0) <=> 0;
my $dy = ($y1 - $y0) <=> 0;
my $cells = $self->{cells};
my @coords;
my ($x,$y) = ($x0,$y0); # starting pos
###########################################################################
# below follow some shortcuts for easy things like straight paths:
print STDERR "# dx,dy: $dx,$dy\n" if $self->{debug};
if ($dx == 0 || $dy == 0)
{
# try straight path to target:
print STDERR "# $src->{x},$src->{y} => $dst->{x},$dst->{y} - trying short path\n" if $self->{debug};
# distance to node:
my $dx1 = ($x1 - $x0);
my $dy1 = ($y1 - $y0);
($x,$y) = ($x0+$dx,$y0+$dy); # starting pos
if ((abs($dx1) == 2) || (abs($dy1) == 2))
{
if (!exists ($cells->{"$x,$y"}))
{
# a single step for this edge:
my $type = EDGE_LABEL_CELL;
# short path
if ($edge->bidirectional())
{
$type += EDGE_SHORT_BD_EW if $dy == 0;
$type += EDGE_SHORT_BD_NS if $dx == 0;
}
elsif ($edge->undirected())
{
$type += EDGE_SHORT_UN_EW if $dy == 0;
$type += EDGE_SHORT_UN_NS if $dx == 0;
}
else
{
$type += EDGE_SHORT_E if ($dx == 1 && $dy == 0);
$type += EDGE_SHORT_S if ($dx == 0 && $dy == 1);
$type += EDGE_SHORT_W if ($dx == -1 && $dy == 0);
$type += EDGE_SHORT_N if ($dx == 0 && $dy == -1);
}
# if one of the end points of the edge is of shape 'edge'
# remove end/start flag
if (($edge->{to}->attribute('shape') ||'') eq 'edge')
{
# we only need to remove one start point, namely the one at the "end"
if ($dx > 0)
{
$type &= ~EDGE_START_E;
}
elsif ($dx < 0)
{
$type &= ~EDGE_START_W;
}
}
if (($edge->{from}->attribute('shape') ||'') eq 'edge')
{
$type &= ~EDGE_START_MASK;
}
return [ $x, $y, $type ]; # return a short EDGE
}
}
my $type = EDGE_HOR; $type = EDGE_VER if $dx == 0; # - or |
my $done = 0;
my $label_done = 0;
while (3 < 5) # endless loop
{
# Since we do not handle crossings here, A* will be tried if we hit an
# edge in this test.
$done = 1, last if exists $cells->{"$x,$y"}; # cell already full
# the first cell gets the label
my $t = $type; $t += EDGE_LABEL_CELL if $label_done++ == 0;
push @coords, $x, $y, $t; # good one, is free
$x += $dx; $y += $dy; # next field
last if ($x == $x1) && ($y == $y1);
}
if ($done == 0)
{
print STDERR "# success for ", scalar @coords / 3, " steps in path\n" if $self->{debug};
# return all fields of path
return $self->_end_points($edge, \@coords, $dx, $dy);
}
} # end else straight path try
###########################################################################
# Try paths with one bend:
# ($dx != 0 && $dy != 0) => path with one bend
# XXX TODO:
# This could be handled by A*, too, but it would be probably a bit slower.
else
{
# straight path not possible, since x0 != x1 AND y0 != y1
# " |" "| "
# try first "--+" (aka hor => ver), then "+---" (aka ver => hor)
my $done = 0;
print STDERR "# bend path from $x,$y\n" if $self->{debug};
# try hor => ver
my $type = EDGE_HOR;
my $label = 0; # attach label?
$label = 1 if ref($edge) && ($edge->label()||'') eq ''; # no label?
$x += $dx;
while ($x != $x1)
{
$done++, last if exists $cells->{"$x,$y"}; # cell already full
print STDERR "# at $x,$y\n" if $self->{debug};
my $t = $type; $t += EDGE_LABEL_CELL if $label++ == 0;
push @coords, $x, $y, $t; # good one, is free
$x += $dx; # next field
};
# check the bend itself
$done++ if exists $cells->{"$x,$y"}; # cell already full
if ($done == 0)
{
my $type_bend = _astar_edge_type ($x-$dx,$y, $x,$y, $x,$y+$dy);
push @coords, $x, $y, $type_bend; # put in bend
print STDERR "# at $x,$y\n" if $self->{debug};
$y += $dy;
$type = EDGE_VER;
while ($y != $y1)
{
$done++, last if exists $cells->{"$x,$y"}; # cell already full
print STDERR "# at $x,$y\n" if $self->{debug};
push @coords, $x, $y, $type; # good one, is free
$y += $dy;
}
}
if ($done != 0)
{
$done = 0;
# try ver => hor
print STDERR "# hm, now trying first vertical, then horizontal\n" if $self->{debug};
$type = EDGE_VER;
@coords = (); # drop old version
($x,$y) = ($x0, $y0 + $dy); # starting pos
while ($y != $y1)
{
$done++, last if exists $cells->{"$x,$y"}; # cell already full
print STDERR "# at $x,$y\n" if $self->{debug};
push @coords, $x, $y, $type; # good one, is free
$y += $dy; # next field
};
# check the bend itself
$done++ if exists $cells->{"$x,$y"}; # cell already full
if ($done == 0)
{
my $type_bend = _astar_edge_type ($x,$y-$dy, $x,$y, $x+$dx,$y);
push @coords, $x, $y, $type_bend; # put in bend
print STDERR "# at $x,$y\n" if $self->{debug};
$x += $dx;
my $label = 0; # attach label?
$label = 1 if $edge->label() eq ''; # no label?
$type = EDGE_HOR;
while ($x != $x1)
{
$done++, last if exists $cells->{"$x,$y"}; # cell already full
print STDERR "# at $x,$y\n" if $self->{debug};
my $t = $type; $t += EDGE_LABEL_CELL if $label++ == 0;
push @coords, $x, $y, $t; # good one, is free
$x += $dx;
}
}
}
if ($done == 0)
{
print STDERR "# success for ", scalar @coords / 3, " steps in path\n" if $self->{debug};
# return all fields of path
return $self->_end_points($edge, \@coords, $dx, $dy);
}
print STDERR "# no success\n" if $self->{debug};
} # end path with $dx and $dy
$self->_find_path_astar($edge); # try generic approach as last hope
}
sub _find_path_loop
{
# find a path from one node back to itself
my ($self, $src, $edge) = @_;
print STDERR "# Finding looping path from $src->{name} to $src->{name}\n" if $self->{debug};
my ($n, $cells, $d, $type, $loose) = @_;
# get a list of all places
my @places = $src->_near_places(
$self->{cells}, 1, [
EDGE_LOOP_EAST,
EDGE_LOOP_SOUTH,
EDGE_LOOP_WEST,
EDGE_LOOP_NORTH,
], 0, 90);
my $flow = $src->flow();
# We cannot use _shuffle_dir() here, because self-loops
# are tried in a different order:
# the default (east)
my $index = [
EDGE_LOOP_NORTH,
EDGE_LOOP_SOUTH,
EDGE_LOOP_WEST,
EDGE_LOOP_EAST,
];
# west
$index = [
EDGE_LOOP_SOUTH,
EDGE_LOOP_NORTH,
EDGE_LOOP_EAST,
EDGE_LOOP_WEST,
] if $flow == 270;
# north
$index = [
EDGE_LOOP_WEST,
EDGE_LOOP_EAST,
EDGE_LOOP_SOUTH,
EDGE_LOOP_NORTH,
] if $flow == 0;
# south
$index = [
EDGE_LOOP_EAST,
EDGE_LOOP_WEST,
EDGE_LOOP_NORTH,
EDGE_LOOP_SOUTH,
] if $flow == 180;
for my $this_try (@$index)
{
my $idx = 0;
while ($idx < @places)
{
print STDERR "# Trying $places[$idx+0],$places[$idx+1]\n" if $self->{debug};
next unless $places[$idx+2] == $this_try;
# build a path from the returned piece
my @rc = ($places[$idx], $places[$idx+1], $places[$idx+2]);
print STDERR "# Trying $rc[0],$rc[1]\n" if $self->{debug};
next unless $self->_path_is_clear(\@rc);
print STDERR "# Found looping path\n" if $self->{debug};
return \@rc;
} continue { $idx += 3; }
}
[]; # no path found
}
#############################################################################
#############################################################################
# This package represents a simple/cheap/fast heap:
package Graph::Easy::Heap;
require Graph::Easy::Base;
our @ISA = qw/Graph::Easy::Base/;
use strict;
sub _init
{
my ($self,$args) = @_;
$self->{_heap} = [ ];
$self;
}
sub add
{
# add one element to the heap
my ($self,$elem) = @_;
my $heap = $self->{_heap};
# heap empty?
if (@$heap == 0)
{
push @$heap, $elem;
}
# smaller than first elem?
elsif ($elem->[0] < $heap->[0]->[0])
{
#print STDERR "# $elem->[0] is smaller then first elem $heap->[0]->[0] (with ", scalar @$heap," elems on heap)\n";
unshift @$heap, $elem;
}
# bigger than or equal to last elem?
elsif ($elem->[0] > $heap->[-1]->[0])
{
#print STDERR "# $elem->[0] is bigger then last elem $heap->[-1]->[0] (with ", scalar @$heap," elems on heap)\n";
push @$heap, $elem;
}
else
{
# insert the elem at the right position
# if we have less than X elements, use linear search
my $el = $elem->[0];
if (scalar @$heap < 10)
{
my $i = 0;
for my $e (@$heap)
{
if ($e->[0] > $el)
{
splice (@$heap, $i, 0, $elem); # insert $elem
return undef;
}
$i++;
}
# else, append at the end
push @$heap, $elem;
}
else
{
# use binary search
my $l = 0; my $r = scalar @$heap;
while (($r - $l) > 2)
{
my $m = int((($r - $l) / 2) + $l);
# print "l=$l r=$r m=$m el=$el heap=$heap->[$m]->[0]\n";
if ($heap->[$m]->[0] <= $el)
{
$l = $m;
}
else
{
$r = $m;
}
}
while ($l < @$heap)
{
if ($heap->[$l]->[0] > $el)
{
splice (@$heap, $l, 0, $elem); # insert $elem
return undef;
}
$l++;
}
# else, append at the end
push @$heap, $elem;
}
}
undef;
}
sub elements
{
scalar @{$_[0]->{_heap}};
}
sub extract_top
{
# remove and return the top elemt
shift @{$_[0]->{_heap}};
}
sub delete
{
# Find an element by $x,$y and delete it
my ($self, $x, $y) = @_;
my $heap = $self->{_heap};
my $i = 0;
for my $e (@$heap)
{
if ($e->[1] == $x && $e->[2] == $y)
{
splice (@$heap, $i, 1);
return;
}
$i++;
}
$self;
}
sub sort_sub
{
my ($self) = shift;
$self->{_sort} = shift;
}
#############################################################################
#############################################################################
package Graph::Easy;
# Generic pathfinding via the A* algorithm:
# See http://bloodgate.com/perl/graph/astar.html for some background.
sub _astar_modifier
{
# calculate the cost for the path at cell x1,y1
my ($x1,$y1,$x,$y,$px,$py, $cells) = @_;
my $add = 1;
if (defined $x1)
{
my $xy = "$x1,$y1";
# add a harsh penalty for crossing an edge, meaning we can travel many
# fields to go around.
$add += 30 if ref($cells->{$xy}) && $cells->{$xy}->isa('Graph::Easy::Edge');
}
if (defined $px)
{
# see whether the new position $x1,$y1 is a continuation from $px,$py => $x,$y
# e.g. if from we go down from $px,$py to $x,$y, then anything else then $x,$y+1 will
# get a penalty
my $dx1 = ($px-$x) <=> 0;
my $dy1 = ($py-$y) <=> 0;
my $dx2 = ($x-$x1) <=> 0;
my $dy2 = ($y-$y1) <=> 0;
$add += 6 unless $dx1 == $dx2 || $dy1 == $dy2;
}
$add;
}
sub _astar_distance
{
# calculate the manhattan distance between x1,y1 and x2,y2
# my ($x1,$y1,$x2,$y2) = @_;
my $dx = abs($_[2] - $_[0]);
my $dy = abs($_[3] - $_[1]);
# plus 1 because we need to go around one corner if $dx != 0 && $dx != 0
$dx++ if $dx != 0 && $dy != 0;
$dx + $dy;
}
my $edge_type = {
'0,1,-1,0' => EDGE_N_W,
'0,1,0,1' => EDGE_VER,
'0,1,1,0' => EDGE_N_E,
'-1,0,0,-1' => EDGE_N_E,
'-1,0,-1,0' => EDGE_HOR,
'-1,0,0,1' => EDGE_S_E,
'0,-1,-1,0' => EDGE_S_W,
'0,-1,0,-1' => EDGE_VER,
'0,-1,1,0' => EDGE_S_E,
'1,0,0,-1' => EDGE_N_W,
'1,0,1,0' => EDGE_HOR,
'1,0,0,1' => EDGE_S_W,
# loops (left-right-left etc)
'0,-1,0,1' => EDGE_N_W_S,
'0,1,0,-1' => EDGE_S_W_N,
'1,0,-1,0' => EDGE_E_S_W,
'-1,0,1,0' => EDGE_W_S_E,
};
sub _astar_edge_type
{
# from three consecutive positions calculate the edge type (VER, HOR, N_W etc)
my ($x,$y, $x1,$y1, $x2, $y2) = @_;
my $dx1 = ($x1 - $x) <=> 0;
my $dy1 = ($y1 - $y) <=> 0;
my $dx2 = ($x2 - $x1) <=> 0;
my $dy2 = ($y2 - $y1) <=> 0;
# in some cases we get (0,-1,0,0), so set the missing parts
($dx2,$dy2) = ($dx1,$dy1) if $dx2 == 0 && $dy2 == 0;
# can this case happen?
($dx1,$dy1) = ($dx2,$dy2) if $dx1 == 0 && $dy1 == 0;
# return correct type depending on differences
$edge_type->{"$dx1,$dy1,$dx2,$dy2"} || EDGE_HOR;
}
sub _astar_near_nodes
{
# return possible next nodes from $nx,$ny
my ($self, $nx, $ny, $cells, $closed, $min_x, $min_y, $max_x, $max_y) = @_;
my @places = ();
my @tries = ( # ordered E,S,W,N:
$nx + 1, $ny, # right
$nx, $ny + 1, # down
$nx - 1, $ny, # left
$nx, $ny - 1, # up
);
# on crossings, only allow one direction (NS or EW)
my $type = EDGE_CROSS;
# including flags, because only flagless edges may be crossed
$type = $cells->{"$nx,$ny"}->{type} if exists $cells->{"$nx,$ny"};
if ($type == EDGE_HOR)
{
@tries = (
$nx, $ny + 1, # down
$nx, $ny - 1, # up
);
}
elsif ($type == EDGE_VER)
{
@tries = (
$nx + 1, $ny, # right
$nx - 1, $ny, # left
);
}
# This loop does not check whether the position is already open or not,
# the caller will later check if the already-open position needs to be
# replaced by one with a lower cost.
my $i = 0;
while ($i < @tries)
{
my ($x,$y) = ($tries[$i], $tries[$i+1]);
print STDERR "# $min_x,$min_y => $max_x,$max_y\n" if $self->{debug} > 2;
# drop cells outside our working space:
next if $x < $min_x || $x > $max_x || $y < $min_y || $y > $max_y;
my $p = "$x,$y";
print STDERR "# examining pos $p\n" if $self->{debug} > 2;
next if exists $closed->{$p};
if (exists $cells->{$p} && ref($cells->{$p}) && $cells->{$p}->isa('Graph::Easy::Edge'))
{
# If the existing cell is an VER/HOR edge, then we may cross it
my $type = $cells->{$p}->{type}; # including flags, because only flagless edges
# may be crossed
push @places, $x, $y if ($type == EDGE_HOR) || ($type == EDGE_VER);
next;
}
next if exists $cells->{$p}; # uncrossable cell
push @places, $x, $y;
} continue { $i += 2; }
@places;
}
sub _astar_boundaries
{
# Calculate boundaries for area that A* should not leave.
my $self = shift;
my $cache = $self->{cache};
return ( $cache->{min_x}-1, $cache->{min_y}-1,
$cache->{max_x}+1, $cache->{max_y}+1 ) if defined $cache->{min_x};
my ($min_x, $min_y, $max_x, $max_y);
my $cells = $self->{cells};
$min_x = 10000000;
$min_y = 10000000;
$max_x = -10000000;
$max_y = -10000000;
for my $c (sort keys %$cells)
{
my ($x,$y) = split /,/, $c;
$min_x = $x if $x < $min_x;
$min_y = $y if $y < $min_y;
$max_x = $x if $x > $max_x;
$max_y = $y if $y > $max_y;
}
print STDERR "# A* working space boundaries: $min_x, $min_y, $max_x, $max_y\n" if $self->{debug};
( $cache->{min_x}, $cache->{min_y}, $cache->{max_x}, $cache->{max_y} ) =
($min_x, $min_y, $max_x, $max_y);
# make the area one bigger in each direction
$min_x --; $min_y --; $max_x ++; $max_y ++;
($min_x, $min_y, $max_x, $max_y);
}
# on edge pieces, select start fields (left/right of a VER, above/below of a HOR etc)
# contains also for each starting position the joint-type
my $next_fields =
{
EDGE_VER() => [ -1,0, EDGE_W_N_S, +1,0, EDGE_E_N_S ],
EDGE_HOR() => [ 0,-1, EDGE_N_E_W, 0,+1, EDGE_S_E_W ],
EDGE_N_E() => [ 0,+1, EDGE_E_N_S, -1,0, EDGE_N_E_W ], # |_
EDGE_N_W() => [ 0,+1, EDGE_W_N_S, +1,0, EDGE_N_E_W ], # _|
EDGE_S_E() => [ 0,-1, EDGE_E_N_S, -1,0, EDGE_S_E_W ],
EDGE_S_W() => [ 0,-1, EDGE_W_N_S, +1,0, EDGE_S_E_W ],
};
# on edge pieces, select end fields (left/right of a VER, above/below of a HOR etc)
# contains also for each end position the joint-type
my $prev_fields =
{
EDGE_VER() => [ -1,0, EDGE_W_N_S, +1,0, EDGE_E_N_S ],
EDGE_HOR() => [ 0,-1, EDGE_N_E_W, 0,+1, EDGE_S_E_W ],
EDGE_N_E() => [ 0,+1, EDGE_E_N_S, -1,0, EDGE_N_E_W ], # |_
EDGE_N_W() => [ 0,+1, EDGE_W_N_S, +1,0, EDGE_N_E_W ], # _|
EDGE_S_E() => [ 0,-1, EDGE_E_N_S, -1,0, EDGE_S_E_W ],
EDGE_S_W() => [ 0,-1, EDGE_W_N_S, +1,0, EDGE_S_E_W ],
};
use Graph::Easy::Util qw(ord_values);
sub _get_joints
{
# from a list of shared, already placed edges, get possible start/end fields
my ($self, $shared, $mask, $types, $cells, $next_fields) = @_;
# XXX TODO: do not do this for edges with no free places for joints
# take each cell from all edges shared, already placed edges as start-point
for my $e (@$shared)
{
for my $c (@{$e->{cells}})
{
my $type = $c->{type} & EDGE_TYPE_MASK;
next unless exists $next_fields->{ $type };
# don't consider end/start (depending on $mask) cells
# do not join EDGE_HOR or EDGE_VER, but join corner pieces
next if ( ($type == EDGE_HOR()) ||
($type == EDGE_VER()) ) &&
($c->{type} & $mask);
my $fields = $next_fields->{$type};
my ($px,$py) = ($c->{x},$c->{y});
my $i = 0;
while ($i < @$fields)
{
my ($sx,$sy, $jt) = ($fields->[$i], $fields->[$i+1], $fields->[$i+2]);
$sx += $px; $sy += $py; $i += 3;
my $sxsy = "$sx,$sy";
# don't add the field twice
next if exists $cells->{$sxsy};
$cells->{$sxsy} = [ $sx, $sy, undef, $px, $py ];
# keep eventually set start/end points on the original cell
$types->{$sxsy} = $jt + ($c->{type} & EDGE_FLAG_MASK);
}
}
}
my @R;
# convert hash to array
for my $s (ord_values ( $cells ))
{
push @R, @$s;
}
@R;
}
sub _join_edge
{
# Find out whether an edge sharing an ending point with the source edge
# runs alongside the source node, if so, convert it to a joint:
my ($self, $node, $edge, $shared, $end) = @_;
# we check the sides B,C,D and E for HOR and VER edge pices:
# --D--
# | +---+ |
# E | A | B
# | +---+ |
# --C--
my $flags =
[
EDGE_W_N_S + EDGE_START_W,
EDGE_N_E_W + EDGE_START_N,
EDGE_E_N_S + EDGE_START_E,
EDGE_S_E_W + EDGE_START_S,
];
$flags =
[
EDGE_W_N_S + EDGE_END_W,
EDGE_N_E_W + EDGE_END_N,
EDGE_E_N_S + EDGE_END_E,
EDGE_S_E_W + EDGE_END_S,
] if $end || $edge->{bidirectional};
my $cells = $self->{cells};
my @places = $node->_near_places($cells, 1, # distance 1
$flags, 'loose');
my $i = 0;
while ($i < @places)
{
my ($x,$y) = ($places[$i], $places[$i+1]); $i += 3;
next unless exists $cells->{"$x,$y"}; # empty space?
# found some cell, check that it is a EDGE_HOR or EDGE_VER
my $cell = $cells->{"$x,$y"};
next unless $cell->isa('Graph::Easy::Edge::Cell');
my $cell_type = $cell->{type} & EDGE_TYPE_MASK;
next unless $cell_type == EDGE_HOR || $cell_type == EDGE_VER;
# the cell must belong to one of the shared edges
my $e = $cell->{edge}; local $_;
next unless scalar grep { $e == $_ } @$shared;
# make the cell at the current pos a joint
$cell->_make_joint($edge,$places[$i-1]);
# The layouter will check that each edge has a cell, so add a dummy one to
# $edge to make it happy:
Graph::Easy::Edge::Cell->new( type => EDGE_HOLE, edge => $edge, x => $x, y => $y );
return []; # path is empty
}
undef; # did not find an edge cell that can be used as joint
}
sub _find_path_astar
{
# Find a path with the A* algorithm for the given edge (from node A to B)
my ($self,$edge) = @_;
my $cells = $self->{cells};
my $src = $edge->{from};
my $dst = $edge->{to};
print STDERR "# A* from $src->{x},$src->{y} to $dst->{x},$dst->{y}\n" if $self->{debug};
my $start_flags = [
EDGE_START_W,
EDGE_START_N,
EDGE_START_E,
EDGE_START_S,
];
my $end_flags = [
EDGE_END_W,
EDGE_END_N,
EDGE_END_E,
EDGE_END_S,
];
# if the target/source node is of shape "edge", remove the endpoint
if ( ($edge->{to}->attribute('shape')) eq 'edge')
{
$end_flags = [ 0,0,0,0 ];
}
if ( ($edge->{from}->attribute('shape')) eq 'edge')
{
$start_flags = [ 0,0,0,0 ];
}
my ($s_p,@ss_p) = $edge->port('start');
my ($e_p,@ee_p) = $edge->port('end');
my (@A, @B); # Start/Stop positions
my @shared_start;
my @shared_end;
my $joint_type = {};
my $joint_type_end = {};
my $start_cells = {};
my $end_cells = {};
###########################################################################
# end fields first (because maybe an edge runs alongside the node)
# has a end point restriction
@shared_end = $edge->{to}->edges_at_port('end', $e_p, $ee_p[0]) if defined $e_p && @ee_p == 1;
my @shared = ();
# filter out all non-placed edges (this will also filter out $edge)
for my $s (@shared_end)
{
push @shared, $s if @{$s->{cells}} > 0;
}
my $per_field = 5; # for shared: x,y,undef, px,py
if (@shared > 0)
{
# more than one edge share the same end port, and one of the others was
# already placed
print STDERR "# edge from '$edge->{from}->{name}' to '$edge->{to}->{name}' shares end port with ",
scalar @shared, " other edge(s)\n" if $self->{debug};
# if there is one of the already-placed edges running alongside the src
# node, we can just convert the field to a joint and be done
my $path = $self->_join_edge($src,$edge,\@shared);
return $path if $path; # already done?
@B = $self->_get_joints(\@shared, EDGE_START_MASK, $joint_type_end, $end_cells, $prev_fields);
}
else
{
# potential stop positions
@B = $dst->_near_places($cells, 1, $end_flags, 1); # distance = 1: slots
# the edge has a port description, limiting the end places
@B = $dst->_allowed_places( \@B, $dst->_allow( $e_p, @ee_p ), 3)
if defined $e_p;
$per_field = 3; # x,y,type
}
return unless scalar @B > 0; # no free slots on target node?
###########################################################################
# start fields
# has a starting point restriction:
@shared_start = $edge->{from}->edges_at_port('start', $s_p, $ss_p[0]) if defined $s_p && @ss_p == 1;
@shared = ();
# filter out all non-placed edges (this will also filter out $edge)
for my $s (@shared_start)
{
push @shared, $s if @{$s->{cells}} > 0;
}
if (@shared > 0)
{
# More than one edge share the same start port, and one of the others was
# already placed, so we just run along until we catch it up with a joint:
print STDERR "# edge from '$edge->{from}->{name}' to '$edge->{to}->{name}' shares start port with ",
scalar @shared, " other edge(s)\n" if $self->{debug};
# if there is one of the already-placed edges running alongside the src
# node, we can just convert the field to a joint and be done
my $path = $self->_join_edge($dst, $edge, \@shared, 'end');
return $path if $path; # already done?
@A = $self->_get_joints(\@shared, EDGE_END_MASK, $joint_type, $start_cells, $next_fields);
}
else
{
# from SRC to DST
# get all the starting positions
# distance = 1: slots, generate starting types, the direction is shifted
# by 90° counter-clockwise
my $s = $start_flags; $s = $end_flags if $edge->{bidirectional};
my @start = $src->_near_places($cells, 1, $s, 1, $src->_shift(-90) );
# the edge has a port description, limiting the start places
@start = $src->_allowed_places( \@start, $src->_allow( $s_p, @ss_p ), 3)
if defined $s_p;
return unless @start > 0; # no free slots on start node?
my $i = 0;
while ($i < scalar @start)
{
my $sx = $start[$i]; my $sy = $start[$i+1]; my $type = $start[$i+2]; $i += 3;
# compute the field inside the node from where $sx,$sy is reached:
my $px = $sx; my $py = $sy;
if ($sy < $src->{y} || $sy >= $src->{y} + $src->{cy})
{
$py = $sy + 1 if $sy < $src->{y}; # above
$py = $sy - 1 if $sy > $src->{y}; # below
}
else
{
$px = $sx + 1 if $sx < $src->{x}; # right
$px = $sx - 1 if $sx > $src->{x}; # left
}
push @A, ($sx, $sy, $type, $px, $py);
}
}
###########################################################################
# use A* to finally find the path:
my $path = $self->_astar(\@A,\@B,$edge, $per_field);
if (@$path > 0 && keys %$start_cells > 0)
{
# convert the edge piece of the starting edge-cell to a joint
my ($x, $y) = ($path->[0],$path->[1]);
my $xy = "$x,$y";
my ($sx,$sy,$t,$px,$py) = @{$start_cells->{$xy}};
my $jt = $joint_type->{"$sx,$sy"};
$cells->{"$px,$py"}->_make_joint($edge,$jt);
}
if (@$path > 0 && keys %$end_cells > 0)
{
# convert the edge piece of the starting edge-cell to a joint
my ($x, $y) = ($path->[-3],$path->[-2]);
my $xy = "$x,$y";
my ($sx,$sy,$t,$px,$py) = @{$end_cells->{$xy}};
my $jt = $joint_type_end->{"$sx,$sy"};
$cells->{"$px,$py"}->_make_joint($edge,$jt);
}
$path;
}
sub _astar
{
# The core A* algorithm, finds a path from a given list of start
# positions @A to and of the given stop positions @B.
my ($self, $A, $B, $edge, $per_field) = @_;
my @start = @$A;
my @stop = @$B;
my $stop = scalar @stop;
my $src = $edge->{from};
my $dst = $edge->{to};
my $cells = $self->{cells};
my $open = Graph::Easy::Heap->new(); # to find smallest elem fast
my $open_by_pos = {}; # to find open nodes by pos
my $closed = {}; # to find closed nodes by pos
my $elem;
# The boundaries of objects in $cell, e.g. the area that the algorithm shall
# never leave.
my ($min_x, $min_y, $max_x, $max_y) = $self->_astar_boundaries();
# Max. steps to prevent endless searching in case of bugs like endless loops.
my $tries = 0; my $max_tries = 2000000;
# count how many times we did A*
$self->{stats}->{astar}++;
###########################################################################
###########################################################################
# put the start positions into OPEN
my $i = 0; my $bias = 0;
while ($i < scalar @start)
{
my ($sx,$sy,$type,$px,$py) =
($start[$i],$start[$i+1],$start[$i+2],$start[$i+3],$start[$i+4]);
$i += 5;
my $cell = $cells->{"$sx,$sy"}; my $rcell = ref($cell);
next if $rcell && $rcell !~ /::Edge/;
my $t = 0; $t = $cell->{type} & EDGE_NO_M_MASK if $rcell =~ /::Edge/;
next if $t != 0 && $t != EDGE_HOR && $t != EDGE_VER;
# For each start point, calculate the distance to each stop point, then use
# the smallest as value:
my $lowest_x = $stop[0]; my $lowest_y = $stop[1];
my $lowest = _astar_distance($sx,$sy, $stop[0], $stop[1]);
for (my $u = $per_field; $u < $stop; $u += $per_field)
{
my $dist = _astar_distance($sx,$sy, $stop[$u], $stop[$u+1]);
($lowest_x, $lowest_y) = ($stop[$u],$stop[$u+1]) if $dist < $lowest;
$lowest = $dist if $dist < $lowest;
}
# add a penalty for crossings
my $malus = 0; $malus = 30 if $t != 0;
$malus += _astar_modifier($px,$py, $sx, $sy, $sx, $sy);
$open->add( [ $lowest, $sx, $sy, $px, $py, $type, 1 ] );
my $o = $malus + $bias + $lowest;
print STDERR "# adding open pos $sx,$sy ($o = $malus + $bias + $lowest) at ($lowest_x,$lowest_y)\n"
if $self->{debug} > 1;
# The cost to reach the starting node is obviously 0. That means that there is
# a tie between going down/up if both possibilities are equal likely. We insert
# a small bias here that makes the preferred order east/south/west/north. Instead
# the algorithm exploring both way and terminating arbitrarily on the one that
# first hits the target, it will explore only one.
$open_by_pos->{"$sx,$sy"} = $o;
$bias += $self->{_astar_bias} || 0;
}
###########################################################################
###########################################################################
# main A* loop
my $stats = $self->{stats};
STEP:
while( defined( $elem = $open->extract_top() ) )
{
$stats->{astar_steps}++ if $self->{debug};
# hard limit on number of steps todo
if ($tries++ > $max_tries)
{
$self->warn("A* reached maximum number of tries ($max_tries), giving up.");
return [];
}
print STDERR "# Smallest elem from ", $open->elements(),
" elems is: weight=", $elem->[0], " at $elem->[1],$elem->[2]\n" if $self->{debug} > 1;
my ($val, $x,$y, $px,$py, $type, $do_stop) = @$elem;
my $key = "$x,$y";
# move node into CLOSE and remove from OPEN
my $g = $open_by_pos->{$key} || 0;
$closed->{$key} = [ $px, $py, $val - $g, $g, $type, $do_stop ];
delete $open_by_pos->{$key};
# we are done when we hit one of the potential stop positions
for (my $i = 0; $i < $stop; $i += $per_field)
{
# reached one stop position?
if ($x == $stop[$i] && $y == $stop[$i+1])
{
$closed->{$key}->[4] += $stop[$i+2] if defined $stop[$i+2];
# store the reached stop position if it is known
if ($per_field > 3)
{
$closed->{$key}->[6] = $stop[$i+3];
$closed->{$key}->[7] = $stop[$i+4];
print STDERR "# Reached stop position $x,$y (lx,ly $stop[$i+3], $stop[$i+4])\n" if $self->{debug} > 1;
}
elsif ($self->{debug} > 1) {
print STDERR "# Reached stop position $x,$y\n";
}
last STEP;
}
} # end test for stop position(s)
$self->_croak("On of '$x,$y' is not defined")
unless defined $x && defined $y;
# get list of potential positions we need to explore from the current one
my @p = $self->_astar_near_nodes($x,$y, $cells, $closed, $min_x, $min_y, $max_x, $max_y);
my $n = 0;
while ($n < scalar @p)
{
my $nx = $p[$n]; my $ny = $p[$n+1]; $n += 2;
if (!defined $nx || !defined $ny)
{
require Carp;
Carp::confess("On of '$nx,$ny' is not defined");
}
my $lg = $g;
$lg += _astar_modifier($px,$py,$x,$y,$nx,$ny,$cells) if defined $px && defined $py;
my $n = "$nx,$ny";
# was already open?
next if (exists $open_by_pos->{$n});
# print STDERR "# Already open pos $nx,$ny with $open_by_pos->{$n} (would be $lg)\n"
# if $self->{debug} && exists $open_by_pos->{$n};
#
# next if exists $open_by_pos->{$n} && $open_by_pos->{$n} <= $lg;
#
# if (exists $open_by_pos->{$n})
# {
# $open->delete($nx, $ny);
# }
# calculate distance to each possible stop position, and
# use the lowest one
my $lowest_distance = _astar_distance($nx, $ny, $stop[0], $stop[1]);
for (my $i = $per_field; $i < $stop; $i += $per_field)
{
my $d = _astar_distance($nx, $ny, $stop[$i], $stop[$i+1]);
$lowest_distance = $d if $d < $lowest_distance;
}
print STDERR "# Opening pos $nx,$ny ($lowest_distance + $lg)\n" if $self->{debug} > 1;
# open new position into OPEN
$open->add( [ $lowest_distance + $lg, $nx, $ny, $x, $y, undef ] );
$open_by_pos->{$n} = $lg;
}
}
###########################################################################
# A* is done, now build a path from the information we computed above:
# count how many steps we did in A*
$self->{stats}->{astar_steps} += $tries;
# no more nodes to follow, so we couldn't find a path
if (!defined $elem)
{
print STDERR "# A* couldn't find a path after $max_tries steps.\n" if $self->{debug};
return [];
}
my $path = [];
my ($cx,$cy) = ($elem->[1],$elem->[2]);
# the "last" cell in the path. Since we follow it backwards, it
# becomes actually the next cell
my ($lx,$ly);
my $type;
my $label_cell = 0; # found a cell to attach the label to?
my @bends; # record all bends in the path to straighten it out
my $idx = 0;
# follow $elem back to the source to find the path
while (defined $cx)
{
last unless exists $closed->{"$cx,$cy"};
my $xy = "$cx,$cy";
$type = $closed->{$xy}->[ 4 ];
my ($px,$py) = @{ $closed->{$xy} }; # get X,Y of parent cell
my $edge_type = ($type||0) & EDGE_TYPE_MASK;
if ($edge_type == 0)
{
my $edge_flags = ($type||0) & EDGE_FLAG_MASK;
# either a start or a stop cell
if (!defined $px)
{
# We can figure it out from the flag of the position of cx,cy
# ................
# : EDGE_START_S :
# .......................................
# START_E : px,py : EDGE_START_W :
# .......................................
# : EDGE_START_N :
# ................
($px,$py) = ($cx, $cy); # start with same cell
$py ++ if ($edge_flags & EDGE_START_S) != 0;
$py -- if ($edge_flags & EDGE_START_N) != 0;
$px ++ if ($edge_flags & EDGE_START_E) != 0;
$px -- if ($edge_flags & EDGE_START_W) != 0;
}
# if lx, ly is undefined because px,py is a joint, get it via the stored
# x,y pos of the very last cell in the path
if (!defined $lx)
{
$lx = $closed->{$xy}->[6];
$ly = $closed->{$xy}->[7];
}
# still not known?
if (!defined $lx)
{
# If lx,ly is undefined because we are at the end of the path,
# we can figure out from the flag of the position of cx,cy.
# ..............
# : EDGE_END_S :
# .................................
# END_E : lx,ly : EDGE_END_W :
# .................................
# : EDGE_END_N :
# ..............
($lx,$ly) = ($cx, $cy); # start with same cell
$ly ++ if ($edge_flags & EDGE_END_S) != 0;
$ly -- if ($edge_flags & EDGE_END_N) != 0;
$lx ++ if ($edge_flags & EDGE_END_E) != 0;
$lx -- if ($edge_flags & EDGE_END_W) != 0;
}
# now figure out correct type for this cell from positions of
# parent/following cell
$type += _astar_edge_type($px, $py, $cx, $cy, $lx,$ly);
}
print STDERR "# Following back from $lx,$ly over $cx,$cy to $px,$py\n" if $self->{debug} > 1;
if ($px == $lx && $py == $ly && ($cx != $lx || $cy != $ly))
{
print STDERR
"# Warning: A* detected loop in path-backtracking at $px,$py, $cx,$cy, $lx,$ly\n"
if $self->{debug};
last;
}
$type = EDGE_HOR if ($type & EDGE_TYPE_MASK) == 0; # last resort
# if this is the first hor edge, attach the label to it
# XXX TODO: This clearly is not optimal. Look for left-most HOR CELL
my $t = $type & EDGE_TYPE_MASK;
# Do not put the label on crossings:
if ($label_cell == 0 && (!exists $cells->{"$cx,$cy"}) && ($t == EDGE_HOR || $t == EDGE_VER))
{
$label_cell++;
$type += EDGE_LABEL_CELL;
}
push @bends, [ $type, $cx, $cy, -$idx ]
if ($type == EDGE_S_E || $t == EDGE_S_W || $t == EDGE_N_E || $t == EDGE_N_W);
unshift @$path, $cx, $cy, $type; # unshift to reverse the path
last if $closed->{"$cx,$cy"}->[ 5 ]; # stop here?
($lx,$ly) = ($cx,$cy);
($cx,$cy) = @{ $closed->{"$cx,$cy"} }; # get X,Y of next cell
$idx += 3; # index into $path (for bends)
}
print STDERR "# Trying to straighten path\n" if @bends >= 3 && $self->{debug};
# try to straighten unnec. inward bends
$self->_straighten_path($path, \@bends, $edge) if @bends >= 3;
return ($path,$closed,$open_by_pos) if wantarray;
$path;
}
# 1:
# | |
# +----+ => |
# | |
# ----+ ------+
# 2:
# +--- +------
# | |
# +---+ => |
# | |
# 3:
# ----+ ------+
# | => |
# +----+ |
# | |
# 4:
# | |
# +---+ |
# | => |
# +----+ +------
my $bend_patterns = [
# The patterns are duplicated to catch both directions of the path:
# First five entries must match
# dx, dy,
# coordinates for new edge
# (2 == y, 1 == x, first is
# taken from A, second from B)
# these replace the first & last bend
# 1:
[ EDGE_N_W, EDGE_S_E, EDGE_N_W, 0, -1, 2, 1, EDGE_HOR, EDGE_VER, 1,0, 0,-1 ], # 0
[ EDGE_N_W, EDGE_S_E, EDGE_N_W, -1, 0, 1, 2, EDGE_VER, EDGE_HOR, 0,1, -1,0 ], # 1
# 2:
[ EDGE_S_E, EDGE_N_W, EDGE_S_E, 0, -1, 1, 2, EDGE_VER, EDGE_HOR, 0,-1, 1,0 ], # 2
[ EDGE_S_E, EDGE_N_W, EDGE_S_E, -1, 0, 2, 1, EDGE_HOR, EDGE_VER, -1,0, 0,1 ], # 3
# 3:
[ EDGE_S_W, EDGE_N_E, EDGE_S_W, 0, 1, 2, 1, EDGE_HOR, EDGE_VER, 1,0, 0,1 ], # 4
[ EDGE_S_W, EDGE_N_E, EDGE_S_W, -1, 0, 1, 2, EDGE_VER, EDGE_HOR, 0,-1, -1,0 ], # 5
# 4:
[ EDGE_N_E, EDGE_S_W, EDGE_N_E, 1, 0, 1, 2, EDGE_VER, EDGE_HOR, 0,1, 1,0 ], # 6
[ EDGE_N_E, EDGE_S_W, EDGE_N_E, 0, -1, 2, 1, EDGE_HOR, EDGE_VER, -1,0, 0,-1 ], # 7
];
sub _straighten_path
{
my ($self, $path, $bends, $edge) = @_;
# XXX TODO:
# in case of multiple bends, removes only one of them due to overlap
my $cells = $self->{cells};
my $i = 0;
BEND:
while ($i < (scalar @$bends - 2))
{
# for each bend, check it and the next two bends
# print STDERR "Checking bend $i at $bends->[$i], $bends->[$i+1], $bends->[$i+2]\n";
my ($a,$b,$c) = ($bends->[$i],
$bends->[$i+1],
$bends->[$i+2]);
my $dx = ($b->[1] - $a->[1]);
my $dy = ($b->[2] - $a->[2]);
my $p = 0;
for my $pattern (@$bend_patterns)
{
$p++;
next if ($a->[0] != $pattern->[0]) ||
($b->[0] != $pattern->[1]) ||
($c->[0] != $pattern->[2]) ||
($dx != $pattern->[3]) ||
($dy != $pattern->[4]);
# pattern matched
# print STDERR "# Got bends for pattern ", $p-1," (@$pattern):\n";
# print STDERR "# type x,y,\n# @$a\n# @$b\n# @$c\n";
# check that the alternative path is empty
# new corner:
my $cx = $a->[$pattern->[5]];
my $cy = $c->[$pattern->[6]];
($cx,$cy) = ($cy,$cx) if $pattern->[5] == 2; # need to swap?
next BEND if exists $cells->{"$cx,$cy"};
# print STDERR "# new corner at $cx,$cy (swap: $pattern->[5])\n";
# check from A to new corner
my $x = $a->[1];
my $y = $a->[2];
my @replace = ();
push @replace, $cx, $cy, $pattern->[0] if ($x == $cx && $y == $cy);
my $ddx = $pattern->[9];
my $ddy = $pattern->[10];
# print STDERR "# dx,dy: $ddx,$ddy\n";
while ($x != $cx || $y != $cy)
{
next BEND if exists $cells->{"$x,$y"};
# print STDERR "# at $x $y (go to $cx,$cy)\n"; sleep(1);
push @replace, $x, $y, $pattern->[7];
$x += $ddx;
$y += $ddy;
}
$x = $cx; $y = $cy;
# check from new corner to C
$ddx = $pattern->[11];
$ddy = $pattern->[12];
while ($x != $c->[1] || $y != $c->[2])
{
next BEND if exists $cells->{"$x,$y"};
# print STDERR "# at $x $y (go to $cx,$cy)\n"; sleep(1);
push @replace, $x, $y, $pattern->[8];
# set the correct type on the corner
$replace[-1] = $pattern->[0] if ($x == $cx && $y == $cy);
$x += $ddx;
$y += $ddy;
}
# insert Corner
push @replace, $x, $y, $pattern->[8];
# use Data::Dumper; print STDERR Dumper(@replace);
# print STDERR "# generated ", scalar @replace, " entries\n";
# print STDERR "# idx A $a->[3] C $c->[3]\n";
# the path is clear, so replace the inward bend with the new one
my $diff = $a->[3] - $c->[3] ? -3 : 3;
my $idx = 0; my $p_idx = $a->[3] + $diff;
while ($idx < @replace)
{
# print STDERR "# replace $p_idx .. $p_idx + 2\n";
# print STDERR "# replace $path->[$p_idx] with $replace[$idx]\n";
# print STDERR "# replace $path->[$p_idx+1] with $replace[$idx+1]\n";
# print STDERR "# replace $path->[$p_idx+2] with $replace[$idx+2]\n";
$path->[$p_idx] = $replace[$idx];
$path->[$p_idx+1] = $replace[$idx+1];
$path->[$p_idx+2] = $replace[$idx+2];
$p_idx += $diff;
$idx += 3;
}
} # end for this pattern
} continue { $i++; };
}
sub _map_as_html
{
my ($self, $cells, $p, $closed, $open, $w, $h) = @_;
$w ||= 20;
$h ||= 20;
my $html = <<EOF
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<style type="text/css">
<!--
td {
background: #a0a0a0;
border: #606060 solid 1px;
font-size: 0.75em;
}
td.b, td.b, td.c {
background: #404040;
border: #606060 solid 1px;
}
td.c {
background: #ffffff;
}
table.map {
border-collapse: collapse;
border: black solid 1px;
}
-->
</style>
</head>
<body>
<h1>A* Map</h1>
<p>
Nodes examined: <b>##closed##</b> <br>
Nodes still to do (open): <b>##open##</b> <br>
Nodes in path: <b>##path##</b>
</p>
EOF
;
$html =~ s/##closed##/keys %$closed /eg;
$html =~ s/##open##/keys %$open /eg;
my $path = {};
while (@$p)
{
my $x = shift @$p;
my $y = shift @$p;
my $t = shift @$p;
$path->{"$x,$y"} = undef;
}
$html =~ s/##path##/keys %$path /eg;
$html .= '<table class="map">' . "\n";
for my $y (0..$h)
{
$html .= " <tr>\n";
for my $x (0..$w)
{
my $xy = "$x,$y";
my $c = ' ' x 4;
$html .= " <td class='c'>$c</td>\n" and next if
exists $cells->{$xy} and ref($cells->{$xy}) =~ /Node/;
$html .= " <td class='b'>$c</td>\n" and next if
exists $cells->{$xy} && !exists $path->{$xy};
$html .= " <td>$c</td>\n" and next unless
exists $closed->{$xy} ||
exists $open->{$xy};
my $clr = '#a0a0a0';
if (exists $closed->{$xy})
{
$c = ($closed->{$xy}->[3] || '0') . '+' . ($closed->{$xy}->[2] || '0');
my $color = 0x10 + 8 * (($closed->{$xy}->[2] || 0));
my $color2 = 0x10 + 8 * (($closed->{$xy}->[3] || 0));
$clr = sprintf("%02x%02x",$color,$color2) . 'a0';
}
elsif (exists $open->{$xy})
{
$c = ' ' . $open->{$xy} || '0';
my $color = 0xff - 8 * ($open->{$xy} || 0);
$clr = 'a0' . sprintf("%02x",$color) . '00';
}
my $b = '';
$b = 'border: 2px white solid;' if exists $path->{$xy};
$html .= " <td style='background: #$clr;$b'>$c</td>\n";
}
$html .= " </tr>\n";
}
$html .= "\n</table>\n";
$html;
}
1;
__END__
=head1 NAME
Graph::Easy::Layout::Scout - Find paths in a Manhattan-style grid
=head1 SYNOPSIS
use Graph::Easy;
my $graph = Graph::Easy->new();
my $bonn = Graph::Easy::Node->new(
name => 'Bonn',
);
my $berlin = Graph::Easy::Node->new(
name => 'Berlin',
);
$graph->add_edge ($bonn, $berlin);
$graph->layout();
print $graph->as_ascii( );
# prints:
# +------+ +--------+
# | Bonn | --> | Berlin |
# +------+ +--------+
=head1 DESCRIPTION
C<Graph::Easy::Layout::Scout> contains just the actual pathfinding code for
L<Graph::Easy|Graph::Easy>. It should not be used directly.
=head1 EXPORT
Exports nothing.
=head1 METHODS
This package inserts a few methods into C<Graph::Easy> and
C<Graph::Easy::Node> to enable path-finding for graphs. It should not
be used directly.
=head1 SEE ALSO
L<Graph::Easy>.
=head1 AUTHOR
Copyright (C) 2004 - 2007 by Tels L<http://bloodgate.com>.
See the LICENSE file for information.
=cut
|