File: Tridiagonal.java

package info (click to toggle)
libgrinvin-core-java 1.2-1
  • links: PTS, VCS
  • area: contrib
  • in suites: squeeze
  • size: 3,904 kB
  • ctags: 5,009
  • sloc: java: 23,494; xml: 423; makefile: 15
file content (225 lines) | stat: -rw-r--r-- 8,287 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/* Tridiagonal.java
 * =========================================================================
 * This file is part of the GrInvIn project - http://www.grinvin.org
 * 
 * Copyright (C) 2005-2008 Universiteit Gent
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * A copy of the GNU General Public License can be found in the file
 * LICENSE.txt provided with the source distribution of this program (see
 * the META-INF directory in the source jar). This license can also be
 * found on the GNU website at http://www.gnu.org/licenses/gpl.html.
 * 
 * If you did not receive a copy of the GNU General Public License along
 * with this program, contact the lead developer, or write to the Free
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 */

package org.grinvin.util;

/**
 * This class represents a symmetric tridiagonal real matrix. The main purpose
 * of this class is to provide information related to eigenvalues and
 * eigenvectors of such matrices.
 */
public class Tridiagonal {

    /** Order of this matrix. */
    protected int order;

    /**
     * Diagonal elements of this matrix. Element d[i] contains the matrix
     * element at position (i,i).
     */
    protected double[] d;

    /**
     * Subdiagonal elements of this matrix. Element e[i] contains the matrix
     * element at position (i,i-1). Element e[0] is set to zero.
     */
    protected double[] e;

    /**
     * Create a tridiagonal matrix which is equivalent to the given symmetric
     * real matrix a by some orthogonal transformation. Uses Householder
     * reduction.
     * 
     * <p>
     * <b>Note:</b> This implementation is almost a literal copy of the
     * algorithm <code>tred2</code> from <i>Numerical recipes in C</i>, ISBN
     * 0-521-43108-5.
     * </p>
     */
    public Tridiagonal (double[][] a) {

        // init variables
        order = a.length;
        d = new double[order];
        e = new double[order];

        // make copy of a
        double[][] acopy = new double[order][];
        for (int i = 0; i < order; i++)
            acopy[i] = a[i].clone ();

        // reduce to a tridiagonal matrix
        householder (acopy);
        e[0] = 0.0;
        for (int i = 0; i < order; i++)
            d[i] = acopy[i][i];
    }

    /**
     * Auxiliary routine which performs the Householder reduction. Destroys the
     * contents of array a.
     *
     * @param vectors If true, the orthogonal transformation Q such that
     *        Q<sup>T</sup>.A.Q is tridiagonal, is stored into parameter a as
     *        the result of this algorithm. Otherwise the elements of the
     *        matrix a are destroyed and contain no meaningful information.
     */
    private void householder (double[][] a) {
        for (int i = order - 1; i > 0; i--) {
            int l = i - 1;
            double h = 0.0;
            double scale = 0.0;
            if (l > 0) {
                for (int k = 0; k <= l; k++)
                    if (a[i][k] < 0)
                        scale -= a[i][k];
                    else
                        scale += a[i][k];
                if (scale == 0.0)
                    e[i] = a[i][l];
                else {
                    for (int k = 0; k <= l; k++) {
                        a[i][k] /= scale;
                        h += a[i][k] * a[i][k];
                    }
                    double f = a[i][l];
                    double g = f >= 0.0 ? -Math.sqrt (h) : Math.sqrt (h);
                    e[i] = scale * g;
                    h -= f * g;
                    a[i][l] = f - g;
                    f = 0.0;
                    for (int j = 0; j <= l; j++) {
                        a[j][i] = a[i][j] / h;  // [*]
                        g = 0.0;
                        for (int k = 0; k <= j; k++)
                            g += a[j][k] * a[i][k];
                        for (int k = j + 1; k <= l; k++)
                            g += a[k][j] * a[i][k];
                        e[j] = g / h;
                        f += e[j] * a[i][j];
                    }
                    double hh = f / (h + h);
                    for (int j = 0; j <= l; j++) {
                        f = a[i][j];
                        g = e[j] - hh * f;
                        e[j] = g;
                        for (int k = 0; k <= j; k++)
                            a[j][k] -= f * e[k] + g * a[i][k];
                    }
                }
            } else
                e[i] = a[i][l];
            d[i] = h;
        }
    }

    /**
     * Compute the eigenvalues of this symmetric tridiagonal matrix using the
     * QL algorithm with implicit shifts.
     * 
     * <p>
     * <b>Note:</b> This implementation is almost a literal copy of the
     * algorithm <code>tqli</code> from <i>Numerical recipes in C</i>, ISBN
     * 0-521-43108-5.
     * </p>
     */
    public double[] eigenvalues () {
        return eigen (null);
    }

    /**
     * Auxiliary routine which performs the QL algorithm. Returns the
     * eigenvalues of the tridiagonal matrix, and if z is not null, stores the
     * corresponding eigenvectors into z, after applying the orthogonal
     * transformation originally contained in z.
     */
    private double[] eigen (double[][] z) {
        double[] d = this.d.clone ();
        double[] e = new double[order];
        for (int i = 1; i < order; i++)
            e[i - 1] = this.e[i];
        e[order - 1] = 0.0;
        for (int l = 0; l < order; l++) {
            int iter = 0;
            int m;
            do {
                for (m = l; m < order - 1; m++) {
                    double dd = Math.abs (d[m]) + Math.abs (d[m + 1]);
                    if (Math.abs (e[m]) + dd == dd)
                        break;
                }
                if (m != l) {
                    iter++;
                    if (iter == 30)
                        throw new RuntimeException(
                            "Too many iterations in QL algorithm ");
                    double g = (d[l + 1] - d[l]) / (2.0 * e[l]);
                    double r = Math.sqrt (1.0 + g * g);  //[!] should use pythag?
                    if (g >= 0.0)  //[!] equal sign correct ?

                        g = d[m] - d[l] + e[l] / (g + r);
                    else if (g < 0.0)
                        g = d[m] - d[l] + e[l] / (g - r);
                    double s = 1.0;
                    double c = 1.0;
                    double p = 0.0;
                    int i;
                    for (i = m - 1; i >= l; i--) {
                        double f = s * e[i];
                        double b = c * e[i];
                        r = Math.sqrt (f * f + g * g);  //[!] should use pythag?
                        e[i + 1] = r;
                        if (r == 0.0) {
                            d[i + 1] -= p;
                            e[m] = 0.0;
                            break;
                        }
                        s = f / r;
                        c = g / r;
                        g = d[i + 1] - p;
                        r = (d[i] - g) * s + 2.0 * c * b;
                        p = s * r;
                        d[i + 1] = g + p;
                        g = c * r - b;
                        if (z != null)
                            for (int k = 0; k < order; k++) {
                                f = z[k][i + 1];
                                z[k][i + 1] = s * z[k][i] + c * f;
                                z[k][i] = c * z[k][i] - s * f;
                            }
                    }
                    if (r != 0.0 || i < l) {
                        d[l] -= p;
                        e[l] = g;
                        e[m] = 0.0;
                    }
                }
            } while (m != l);
        }
        return d;
    }
}