File: putgetg.c

package info (click to toggle)
libhdf4 4.1r3-6
  • links: PTS
  • area: main
  • in suites: potato
  • size: 24,092 kB
  • ctags: 26,163
  • sloc: ansic: 204,415; fortran: 29,237; sh: 7,807; makefile: 7,417; cpp: 2,186; pascal: 1,498; asm: 1,027; yacc: 680; lex: 202; sed: 153
file content (257 lines) | stat: -rw-r--r-- 5,901 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
 *	Copyright 1993, University Corporation for Atmospheric Research
 *      See netcdf/COPYRIGHT file for copying and redistribution conditions.
 *
 *	This file supports netCDF variable I/O for generalized hyperslabs.
 *	A generalized hyperslab is one in which the locations of the
 *	memory-resident data values may be arbitrary, though they are 
 *	constrained to have a regular structure.  In addition, the values 
 *	of the netCDF variable may be accessed using non-unity strides.
 *
 *	$Id: putgetg.c,v 1.8 1997/11/13 20:19:46 acheng Exp $
 */

#include	"local_nc.h"


/*
 * Perform I/O on a generalized hyperslab.  The efficiency of this
 * implementation is dependent upon caching in the lower layers.
 */
#ifndef HDF
    static 
#endif
int
NCgenio(handle, varid, start, count, stride, imap, values)
    NC		*handle;
    int		varid;
    const long	*start;		/* NULL => first corner */
    const long	*count;		/* NULL => everything following start[] */
    const long	*stride;	/* NULL => unity strides */
    const long	*imap;		/* NULL => same structure as netCDF variable */
    void	*values ;
{
    int		maxidim;	/* maximum dimensional index */
    NC_var	*vp	= NC_hlookupvar( handle, varid );

    if (vp == NULL)
	return(-1) ;

    maxidim = vp->assoc->count - 1;

    if (maxidim < 0) {
	/*
	 * The variable is a scalar; consequently, there's only one thing 
	 * to get and only one place to put it.  (Why was I called?)
	 */
	return NCvario(handle, varid, start, count, values);

    } else {
	/*
	 * The variable is an array.
	 */
	int	idim;
	char	*valp	= values;
	long	mycount[MAX_VAR_DIMS];
	long	mystart[MAX_VAR_DIMS];
	long	mystride[MAX_VAR_DIMS];
	long	myimap[MAX_VAR_DIMS];
	long	iocount[MAX_VAR_DIMS];	/* count vector for NCvario() */
	long	stop[MAX_VAR_DIMS];	/* stop indexes */
	long	length[MAX_VAR_DIMS];	/* edge lengths in bytes */

	/*
	 * Verify stride argument.
	 */
	for (idim = 0; idim <= maxidim; ++idim) {
	    if (stride != NULL && stride[idim] < 1) {
		NCadvise(NC_EINVAL, "Non-positive stride");
		return(-1) ;
	    }
	}

	/*
	 * Initialize I/O parameters.
	 */
	for (idim = maxidim; idim >= 0; --idim) {
	    mystart[idim]	= start != NULL
				    ? start[idim]
				    : 0;
	    mycount[idim]	= count != NULL
				    ? count[idim]
				    : idim == 0 && IS_RECVAR(vp)
					? handle->numrecs - mystart[idim]
					: vp->shape[idim] - mystart[idim];
	    mystride[idim]	= stride != NULL 
				    ? stride[idim]
				    : 1;
	    myimap[idim]	= imap != NULL 
				    ? imap[idim]
				    : idim == maxidim
					? vp->szof
					: myimap[idim+1] * mycount[idim+1];

	    iocount[idim]	= 1;
	    length[idim]	= myimap[idim] * mycount[idim];
	    stop[idim]		= mystart[idim] + mycount[idim]*mystride[idim];
	}

	/*
	 * As an optimization, adjust I/O parameters when the fastest 
	 * dimension has unity stride both externally and internally.
	 * In this case, the user could have called a simpler routine
	 * (i.e. ncvarget() or ncvarput()).
	 */
	if (mystride[maxidim] == 1 && myimap[maxidim] == vp->szof) {
	    iocount[maxidim]	= mycount[maxidim];
	    mystride[maxidim]	= mycount[maxidim];
	    myimap[maxidim]	= length[maxidim];
	}

	/*
	 * Perform I/O.  Exit when done.
	 */
	for (;;) {
	    int		iostat	= NCvario(handle, varid, mystart, iocount, 
					  (Void*)valp);

	    if (iostat != 0)
		return iostat;

	    /*
	     * The following code permutes through the variable's external
	     * start-index space and it's internal address space.  At the 
	     * UPC, this algorithm is commonly called `odometer code'.
	     */
	    idim = maxidim;
	carry:
	    valp		+= myimap[idim];
	    mystart[idim]	+= mystride[idim];
	    if (mystart[idim] >= stop[idim]) {
		mystart[idim]	 = start[idim];
		valp		-= length[idim];
		if (--idim < 0)
		    return 0;
		goto carry;
	    }
	}				/* I/O loop */
    }					/* variable is array */
}


/*
 * Generalized hyperslab output.
 */
    int
ncvarputg(cdfid, varid, start, count, stride, imap, values)
int cdfid ;
int varid ;
const long *start ;
const long *count ;
const long *stride ;
const long *imap ;
ncvoid *values ;
{
	NC *handle ;

	cdf_routine_name = "ncvarputg" ;

	handle = NC_check_id(cdfid) ;
	if(handle == NULL)
		return(-1) ;

	if(!(handle->flags & NC_RDWR))
	{
		NCadvise(NC_EPERM, "%s: NC_NOWRITE", handle->path) ;
		return(-1) ;
	}
	handle->xdrs->x_op = XDR_ENCODE ;

	return NCgenio(handle, varid, start, count, stride, imap, values);
}


/*
 * Generalized hyperslab input.
 */
    int
ncvargetg(cdfid, varid, start, count, stride, imap, values)
int cdfid ;
int varid ;
const long *start ;
const long *count ;
const long *stride ;
const long *imap ;
ncvoid *values ;
{
	NC *handle ;

	cdf_routine_name = "ncvargetg" ;

	handle = NC_check_id(cdfid) ;
	if (handle == NULL)
		return(-1) ;

	handle->xdrs->x_op = XDR_DECODE ;

	return NCgenio(handle, varid, start, count, 
		       stride, imap, (Void*)values);
}


/*
 * Stride-oriented hyperslab output.
 */
    int
ncvarputs(cdfid, varid, start, count, stride, values)
int cdfid ;
int varid ;
const long *start ;
const long *count ;
const long *stride ;
ncvoid *values ;
{
	NC *handle ;

	cdf_routine_name = "ncvarputs" ;

	handle = NC_check_id(cdfid) ;
	if(handle == NULL)
		return(-1) ;

	if(!(handle->flags & NC_RDWR))
	{
		NCadvise(NC_EPERM, "%s: NC_NOWRITE", handle->path) ;
		return(-1) ;
	}
	handle->xdrs->x_op = XDR_ENCODE ;

	return NCgenio(handle, varid, start, count, stride, NULL, values);
}


/*
 * Stride-oriented hyperslab input.
 */
    int
ncvargets(cdfid, varid, start, count, stride, values)
int cdfid ;
int varid ;
const long *start ;
const long *count ;
const long *stride ;
ncvoid *values ;
{
	NC *handle ;

	cdf_routine_name = "ncvargets" ;

	handle = NC_check_id(cdfid) ;
	if (handle == NULL)
		return(-1) ;

	handle->xdrs->x_op = XDR_DECODE ;

	return NCgenio(handle, varid, start, count, 
		       stride, (long*)0, (Void*)values);
}