File: Beagle.java

package info (click to toggle)
libhmsbeagle 2.1.2-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,756 kB
  • ctags: 2,341
  • sloc: cpp: 17,296; ansic: 5,842; java: 1,696; sh: 1,325; python: 486; makefile: 335; xml: 299
file content (380 lines) | stat: -rw-r--r-- 16,763 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
/*
 * Beagle.java
 *
 */

package beagle;

/**
 * Beagle - An interface exposing the BEAGLE likelihood evaluation library.
 *
 * This interface mirrors the beagle.h API but it for a single instance only.
 * It is intended to be used by JNI wrappers of the BEAGLE library and for
 * Java implementations for testing purposes. BeagleFactory handles the creation
 * of specific istances.
 *
 * @author Andrew Rambaut
 * @author Marc A. Suchard
 * @version $Id:$
 */

public interface Beagle {

    public static int OPERATION_TUPLE_SIZE = 7;
    public static int NONE = -1;


    /**
     * Finalize this instance
     *
     * This function finalizes the instance by releasing allocated memory
     */
    void finalize() throws Throwable;


    /**
     * Set the weights for each pattern
     * @param patternWeights    Array containing patternCount weights
     */
    void setPatternWeights(final double[] patternWeights);

    /**
     * Set the compressed state representation for tip node
     *
     * This function copies a compact state representation into an instance buffer.
     * Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
     * The inStates array should be patternCount in length (replication across categoryCount is not
     * required).
     *
     * @param tipIndex   Index of destination partialsBuffer (input)
     * @param inStates   Pointer to compressed states (input)
     */
    void setTipStates(
            int tipIndex,
            final int[] inStates);

    /**
     * Get the compressed state representation for tip node
     *
     * This function copies a compact state representation from an instance buffer.
     * Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
     * The inStates array should be patternCount in length (replication across categoryCount is not
     * required).
     *
     * @param tipIndex   Index of destination partialsBuffer (input)
     * @param outStates   Pointer to compressed states (input)
     */
    void getTipStates(
            int tipIndex,
            final int[] outStates);

    /**
     * Set an instance partials buffer
     *
     * This function copies an array of partials into an instance buffer. The inPartials array should
     * be stateCount * patternCount in length. For most applications this will be used
     * to set the partial likelihoods for the observed states. Internally, the partials will be copied
     * categoryCount times.
     *
     * @param tipIndex   Index of destination partialsBuffer (input)
     * @param  inPartials   Pointer to partials values to set (input)
     */
    void setTipPartials(
            int tipIndex,
            final double[] inPartials);

    /**
     * Set an instance partials buffer
     *
     * This function copies an array of partials into an instance buffer. The inPartials array should
     * be stateCount * patternCount * categoryCount in length.
     *
     * @param bufferIndex   Index of destination partialsBuffer (input)
     * @param  inPartials   Pointer to partials values to set (input)
     */
    void setPartials(
            int bufferIndex,
            final double[] inPartials);

    /**
     * Get partials from an instance buffer
     *
     * This function copies an array of partials from an instance buffer. The inPartials array should
     * be stateCount * patternCount * categoryCount in length.
     *
     * @param bufferIndex   Index of destination partialsBuffer (input)
     * @param scaleIndex    Index of scaleBuffer to apply to partials (input)
     * @param  outPartials  Pointer to which to receive partialsBuffer (output)
     */
    void getPartials(
            int bufferIndex,
            int scaleIndex,
            final double []outPartials);

    /**
     * Set an eigen-decomposition buffer
     *
     * This function copies an eigen-decomposition into a instance buffer.
     *
     * @param eigenIndex                Index of eigen-decomposition buffer (input)
     * @param inEigenVectors            Flattened matrix (stateCount x stateCount) of eigen-vectors (input)
     * @param inInverseEigenVectors     Flattened matrix (stateCount x stateCount) of inverse-eigen-vectors (input)
     * @param inEigenValues             Vector of eigenvalues
     */
    void setEigenDecomposition(
            int eigenIndex,
            final double[] inEigenVectors,
            final double[] inInverseEigenVectors,
            final double[] inEigenValues);

    /**
     * Set a set of state frequences. These will probably correspond to an
     * eigen-system.
     *
     * @param stateFrequenciesIndex the index of the frequency buffer
     * @param stateFrequencies the array of frequences (stateCount)
     */
    void setStateFrequencies(int stateFrequenciesIndex,
                             final double[] stateFrequencies);

    /**
     * Set a set of category weights. These will probably correspond to an
     * eigen-system.
     *
     * @param categoryWeightsIndex the index of the buffer
     * @param categoryWeights the array of weights
     */
    void setCategoryWeights(int categoryWeightsIndex,
                            final double[] categoryWeights);

    /**
     * Set category rates
     *
     * This function sets the vector of category rates for an instance.
     *
     * @param inCategoryRates       Array containing categoryCount rate scalers (input)
     */
    void setCategoryRates(final double[] inCategoryRates);

    /**
     * Convolve lists of transition probability matrices
     *
     * This function convolves two lists of transition probability matrices.
     *
     * @param firstIndices              List of indices of the first transition probability matrices to convolve (input)
     * @param secondIndices             List of indices of the second transition probability matrices to convolve (input)
     * @param resultIndices             List of indices of resulting transition probability matrices (input)
     * @param matrixCount               Lenght of lists
     */
    void convolveTransitionMatrices(
            final int[] firstIndices,
            final int[] secondIndices,
            final int[] resultIndices,
            int matrixCount);
    
    /**
     * Calculate a list of transition probability matrices
     *
     * This function calculates a list of transition probabilities matrices and their first and
     * second derivatives (if requested).
     *
     * @param eigenIndex                Index of eigen-decomposition buffer (input)
     * @param probabilityIndices        List of indices of transition probability matrices to update (input)
     * @param firstDerivativeIndices    List of indices of first derivative matrices to update (input, NULL implies no calculation)
     * @param secondDervativeIndices    List of indices of second derivative matrices to update (input, NULL implies no calculation)
     * @param edgeLengths               List of edge lengths with which to perform calculations (input)
     * @param count                     Length of lists
     */
    void updateTransitionMatrices(
            int eigenIndex,
            final int[] probabilityIndices,
            final int[] firstDerivativeIndices,
            final int[] secondDervativeIndices,
            final double[] edgeLengths,
            int count);

    /**
     * This function copies a finite-time transition probability matrix into a matrix buffer. This function
     * is used when the application wishes to explicitly set the transition probability matrix rather than
     * using the setEigenDecomposition and updateTransitionMatrices functions. The inMatrix array should be
     * of size stateCount * stateCount * categoryCount and will contain one matrix for each rate category.
     *
     * This function copies a finite-time transition probability matrix into a matrix buffer.
     * @param matrixIndex   Index of matrix buffer (input)
     * @param inMatrix          Pointer to source transition probability matrix (input)
     * @param paddedValue   Value to be used for padding for ambiguous states (e.g. 1 for probability matrices, 0 for derivative matrices) (input)
     */
    void setTransitionMatrix(
            int matrixIndex,			/**< Index of matrix buffer (input) */
            final double[] inMatrix, 	/**< Pointer to source transition probability matrix (input) */
            double paddedValue);
    /**
     * Get a finite-time transition probability matrix
     *
     * This function copies a finite-time transition matrix buffer into the array outMatrix. The
     * outMatrix array should be of size stateCount * stateCount * categoryCount and will be filled
     * with one matrix for each rate category.
     *
     * @param matrixIndex  Index of matrix buffer (input)
     * @param outMatrix    Pointer to destination transition probability matrix (output)
     *
     */
    void getTransitionMatrix(int matrixIndex,
                             double[] outMatrix);

    /**
     * Calculate or queue for calculation partials using a list of operations
     *
     * This function either calculates or queues for calculation a list partials. Implementations
     * supporting SYNCH may queue these calculations while other implementations perform these
     * operations immediately.  Implementations supporting GPU may perform all operations in the list
     * simultaneously.
     *
     * Operations list is a list of 7-tuple integer indices, with one 7-tuple per operation.
     * Format of 7-tuple operation: {destinationPartials,
     *                               destinationScaleWrite,
     *                               destinationScaleRead,
     *                               child1Partials,
     *                               child1TransitionMatrix,
     *                               child2Partials,
     *                               child2TransitionMatrix}
     *
     * @param operations            List of 7-tuples specifying operations (input)
     * @param operationCount        Number of operations (input)
     * @param cumulativeScaleIndex  Index number of scaleBuffer to store accumulated factors (input)
     *
     */
    void updatePartials(
            final int[] operations,
            int operationCount,
            int cumulativeScaleIndex);

    /**
     * Accumulate scale factors
     *
     * This function adds (log) scale factors from a list of scaleBuffers to a cumulative scale
     * buffer. It is used to calculate the marginal scaling at a specific node for each site.
     *
     * @param scaleIndices            	List of scaleBuffers to add (input)
     * @param count                     Number of scaleBuffers in list (input)
     * @param cumulativeScaleIndex      Index number of scaleBuffer to accumulate factors into (input)
     */
    void accumulateScaleFactors(
            final int[] scaleIndices,
            final int count,
            final int cumulativeScaleIndex
    );

    /**
     * Remove scale factors
     *
     * This function removes (log) scale factors from a cumulative scale buffer. The
     * scale factors to be removed are indicated in a list of scaleBuffers.
     *
     * @param scaleIndices            	List of scaleBuffers to remove (input)
     * @param count                     Number of scaleBuffers in list (input)
     * @param cumulativeScaleIndex    	Index number of scaleBuffer containing accumulated factors (input)
     */
    void removeScaleFactors(
            final int[] scaleIndices,
            final int count,
            final int cumulativeScaleIndex
    );


    /**
     * Copy scale factors
     *
     * This function copies scale factors from one buffer to another.
     *
     * @param destScalingIndex          Destination scaleBuffer (input)
     * @param srcScalingIndex           Source scaleBuffer (input)
     */
    void copyScaleFactors(
        int destScalingIndex,
        int srcScalingIndex
    );    

    /**
     * Reset scalefactors
     *
     * This function resets a cumulative scale buffer.
     *
     * @param cumulativeScaleIndex    	Index number of cumulative scaleBuffer (input)
     */
    void resetScaleFactors(int cumulativeScaleIndex);

    /**
     * Calculate site log likelihoods at a root node
     *
     * This function integrates a list of partials at a node with respect to a set of partials-weights and
     * state frequencies to return the log likelihoods for each site
     *
     * @param bufferIndices             List of partialsBuffer indices to integrate (input)
     * @param categoryWeightsIndices    List of indices of category weights to apply to each partialsBuffer (input)
     *                                      should be one categoryCount sized set for each of
     *                                      parentBufferIndices
     * @param stateFrequenciesIndices   List of indices of state frequencies for each partialsBuffer (input)
     *                                      should be one set for each of parentBufferIndices
     * @param cumulativeScaleIndices    List of scalingFactors indices to accumulate over (input). There
     *                                      should be one set for each of parentBufferIndices
     * @param count                     Number of partialsBuffer to integrate (input)
     * @param outSumLogLikelihood       Pointer to destination for resulting sum of log likelihoods (output)
     */

    void calculateRootLogLikelihoods(int[] bufferIndices,
                                     int[] categoryWeightsIndices,
                                     int[] stateFrequenciesIndices,
                                     int[] cumulativeScaleIndices,
                                     int count,
                                     double[] outSumLogLikelihood);

    /**
     * Calculate site log likelihoods and derivatives along an edge
     *
     * This function integrates at list of partials at a parent and child node with respect
     * to a set of partials-weights and state frequencies to return the log likelihoods
     * and first and second derivatives for each site
     *
     * @param parentBufferIndices       List of indices of parent partialsBuffers (input)
     * @param childBufferIndices        List of indices of child partialsBuffers (input)
     * @param probabilityIndices        List indices of transition probability matrices for this edge (input)
     * @param firstDerivativeIndices    List indices of first derivative matrices (input)
     * @param secondDerivativeIndices   List indices of second derivative matrices (input)
     * @param categoryWeightsIndices    List of indices of category weights to apply to each partialsBuffer (input)
     * @param stateFrequenciesIndices   List of indices of state frequencies for each partialsBuffer (input)
     *                                      There should be one set for each of parentBufferIndices
     * @param cumulativeScaleIndices    List of scalingFactors indices to accumulate over (input). There
     *                                      There should be one set for each of parentBufferIndices
     * @param count                     Number of partialsBuffers (input)
     * @param outSumLogLikelihood       Pointer to destination for resulting sum of log likelihoods (output)
     * @param outSumFirstDerivative     Pointer to destination for resulting sum of first derivatives (output)
     * @param outSumSecondDerivative    Pointer to destination for resulting sum of second derivatives (output)
     */

    void calculateEdgeLogLikelihoods(int[] parentBufferIndices,
                                     int[] childBufferIndices,
                                     int[] probabilityIndices,
                                     int[] firstDerivativeIndices,
                                     int[] secondDerivativeIndices,
                                     int[] categoryWeightsIndices,
                                     int[] stateFrequenciesIndices,
                                     int[] cumulativeScaleIndices,
                                     int count,
                                     double[] outSumLogLikelihood,
                                     double[] outSumFirstDerivative,
                                     double[] outSumSecondDerivative);

    /**
     * Return the individual log likelihoods for each site pattern.
     *
     * @param outLogLikelihoods an array in which the likelihoods will be put
     */
    void getSiteLogLikelihoods(double[] outLogLikelihoods);

    /**
     * Get a details class for this instance
     * @return
     */
    public InstanceDetails getDetails();
}