1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/*
* Beagle.java
*
*/
package beagle;
/**
* Beagle - An interface exposing the BEAGLE likelihood evaluation library.
*
* This interface mirrors the beagle.h API but it for a single instance only.
* It is intended to be used by JNI wrappers of the BEAGLE library and for
* Java implementations for testing purposes. BeagleFactory handles the creation
* of specific istances.
*
* @author Andrew Rambaut
* @author Marc A. Suchard
* @version $Id:$
*/
public interface Beagle {
public static int OPERATION_TUPLE_SIZE = 7;
public static int NONE = -1;
/**
* Finalize this instance
*
* This function finalizes the instance by releasing allocated memory
*/
void finalize() throws Throwable;
/**
* Set the weights for each pattern
* @param patternWeights Array containing patternCount weights
*/
void setPatternWeights(final double[] patternWeights);
/**
* Set the compressed state representation for tip node
*
* This function copies a compact state representation into an instance buffer.
* Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
* The inStates array should be patternCount in length (replication across categoryCount is not
* required).
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param inStates Pointer to compressed states (input)
*/
void setTipStates(
int tipIndex,
final int[] inStates);
/**
* Get the compressed state representation for tip node
*
* This function copies a compact state representation from an instance buffer.
* Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
* The inStates array should be patternCount in length (replication across categoryCount is not
* required).
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param outStates Pointer to compressed states (input)
*/
void getTipStates(
int tipIndex,
final int[] outStates);
/**
* Set an instance partials buffer
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount in length. For most applications this will be used
* to set the partial likelihoods for the observed states. Internally, the partials will be copied
* categoryCount times.
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*/
void setTipPartials(
int tipIndex,
final double[] inPartials);
/**
* Set an instance partials buffer
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param bufferIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*/
void setPartials(
int bufferIndex,
final double[] inPartials);
/**
* Get partials from an instance buffer
*
* This function copies an array of partials from an instance buffer. The inPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param bufferIndex Index of destination partialsBuffer (input)
* @param scaleIndex Index of scaleBuffer to apply to partials (input)
* @param outPartials Pointer to which to receive partialsBuffer (output)
*/
void getPartials(
int bufferIndex,
int scaleIndex,
final double []outPartials);
/**
* Set an eigen-decomposition buffer
*
* This function copies an eigen-decomposition into a instance buffer.
*
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param inEigenVectors Flattened matrix (stateCount x stateCount) of eigen-vectors (input)
* @param inInverseEigenVectors Flattened matrix (stateCount x stateCount) of inverse-eigen-vectors (input)
* @param inEigenValues Vector of eigenvalues
*/
void setEigenDecomposition(
int eigenIndex,
final double[] inEigenVectors,
final double[] inInverseEigenVectors,
final double[] inEigenValues);
/**
* Set a set of state frequences. These will probably correspond to an
* eigen-system.
*
* @param stateFrequenciesIndex the index of the frequency buffer
* @param stateFrequencies the array of frequences (stateCount)
*/
void setStateFrequencies(int stateFrequenciesIndex,
final double[] stateFrequencies);
/**
* Set a set of category weights. These will probably correspond to an
* eigen-system.
*
* @param categoryWeightsIndex the index of the buffer
* @param categoryWeights the array of weights
*/
void setCategoryWeights(int categoryWeightsIndex,
final double[] categoryWeights);
/**
* Set category rates
*
* This function sets the vector of category rates for an instance.
*
* @param inCategoryRates Array containing categoryCount rate scalers (input)
*/
void setCategoryRates(final double[] inCategoryRates);
/**
* Convolve lists of transition probability matrices
*
* This function convolves two lists of transition probability matrices.
*
* @param firstIndices List of indices of the first transition probability matrices to convolve (input)
* @param secondIndices List of indices of the second transition probability matrices to convolve (input)
* @param resultIndices List of indices of resulting transition probability matrices (input)
* @param matrixCount Lenght of lists
*/
void convolveTransitionMatrices(
final int[] firstIndices,
final int[] secondIndices,
final int[] resultIndices,
int matrixCount);
/**
* Calculate a list of transition probability matrices
*
* This function calculates a list of transition probabilities matrices and their first and
* second derivatives (if requested).
*
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param probabilityIndices List of indices of transition probability matrices to update (input)
* @param firstDerivativeIndices List of indices of first derivative matrices to update (input, NULL implies no calculation)
* @param secondDervativeIndices List of indices of second derivative matrices to update (input, NULL implies no calculation)
* @param edgeLengths List of edge lengths with which to perform calculations (input)
* @param count Length of lists
*/
void updateTransitionMatrices(
int eigenIndex,
final int[] probabilityIndices,
final int[] firstDerivativeIndices,
final int[] secondDervativeIndices,
final double[] edgeLengths,
int count);
/**
* This function copies a finite-time transition probability matrix into a matrix buffer. This function
* is used when the application wishes to explicitly set the transition probability matrix rather than
* using the setEigenDecomposition and updateTransitionMatrices functions. The inMatrix array should be
* of size stateCount * stateCount * categoryCount and will contain one matrix for each rate category.
*
* This function copies a finite-time transition probability matrix into a matrix buffer.
* @param matrixIndex Index of matrix buffer (input)
* @param inMatrix Pointer to source transition probability matrix (input)
* @param paddedValue Value to be used for padding for ambiguous states (e.g. 1 for probability matrices, 0 for derivative matrices) (input)
*/
void setTransitionMatrix(
int matrixIndex, /**< Index of matrix buffer (input) */
final double[] inMatrix, /**< Pointer to source transition probability matrix (input) */
double paddedValue);
/**
* Get a finite-time transition probability matrix
*
* This function copies a finite-time transition matrix buffer into the array outMatrix. The
* outMatrix array should be of size stateCount * stateCount * categoryCount and will be filled
* with one matrix for each rate category.
*
* @param matrixIndex Index of matrix buffer (input)
* @param outMatrix Pointer to destination transition probability matrix (output)
*
*/
void getTransitionMatrix(int matrixIndex,
double[] outMatrix);
/**
* Calculate or queue for calculation partials using a list of operations
*
* This function either calculates or queues for calculation a list partials. Implementations
* supporting SYNCH may queue these calculations while other implementations perform these
* operations immediately. Implementations supporting GPU may perform all operations in the list
* simultaneously.
*
* Operations list is a list of 7-tuple integer indices, with one 7-tuple per operation.
* Format of 7-tuple operation: {destinationPartials,
* destinationScaleWrite,
* destinationScaleRead,
* child1Partials,
* child1TransitionMatrix,
* child2Partials,
* child2TransitionMatrix}
*
* @param operations List of 7-tuples specifying operations (input)
* @param operationCount Number of operations (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to store accumulated factors (input)
*
*/
void updatePartials(
final int[] operations,
int operationCount,
int cumulativeScaleIndex);
/**
* Accumulate scale factors
*
* This function adds (log) scale factors from a list of scaleBuffers to a cumulative scale
* buffer. It is used to calculate the marginal scaling at a specific node for each site.
*
* @param scaleIndices List of scaleBuffers to add (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to accumulate factors into (input)
*/
void accumulateScaleFactors(
final int[] scaleIndices,
final int count,
final int cumulativeScaleIndex
);
/**
* Remove scale factors
*
* This function removes (log) scale factors from a cumulative scale buffer. The
* scale factors to be removed are indicated in a list of scaleBuffers.
*
* @param scaleIndices List of scaleBuffers to remove (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer containing accumulated factors (input)
*/
void removeScaleFactors(
final int[] scaleIndices,
final int count,
final int cumulativeScaleIndex
);
/**
* Copy scale factors
*
* This function copies scale factors from one buffer to another.
*
* @param destScalingIndex Destination scaleBuffer (input)
* @param srcScalingIndex Source scaleBuffer (input)
*/
void copyScaleFactors(
int destScalingIndex,
int srcScalingIndex
);
/**
* Reset scalefactors
*
* This function resets a cumulative scale buffer.
*
* @param cumulativeScaleIndex Index number of cumulative scaleBuffer (input)
*/
void resetScaleFactors(int cumulativeScaleIndex);
/**
* Calculate site log likelihoods at a root node
*
* This function integrates a list of partials at a node with respect to a set of partials-weights and
* state frequencies to return the log likelihoods for each site
*
* @param bufferIndices List of partialsBuffer indices to integrate (input)
* @param categoryWeightsIndices List of indices of category weights to apply to each partialsBuffer (input)
* should be one categoryCount sized set for each of
* parentBufferIndices
* @param stateFrequenciesIndices List of indices of state frequencies for each partialsBuffer (input)
* should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scalingFactors indices to accumulate over (input). There
* should be one set for each of parentBufferIndices
* @param count Number of partialsBuffer to integrate (input)
* @param outSumLogLikelihood Pointer to destination for resulting sum of log likelihoods (output)
*/
void calculateRootLogLikelihoods(int[] bufferIndices,
int[] categoryWeightsIndices,
int[] stateFrequenciesIndices,
int[] cumulativeScaleIndices,
int count,
double[] outSumLogLikelihood);
/**
* Calculate site log likelihoods and derivatives along an edge
*
* This function integrates at list of partials at a parent and child node with respect
* to a set of partials-weights and state frequencies to return the log likelihoods
* and first and second derivatives for each site
*
* @param parentBufferIndices List of indices of parent partialsBuffers (input)
* @param childBufferIndices List of indices of child partialsBuffers (input)
* @param probabilityIndices List indices of transition probability matrices for this edge (input)
* @param firstDerivativeIndices List indices of first derivative matrices (input)
* @param secondDerivativeIndices List indices of second derivative matrices (input)
* @param categoryWeightsIndices List of indices of category weights to apply to each partialsBuffer (input)
* @param stateFrequenciesIndices List of indices of state frequencies for each partialsBuffer (input)
* There should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scalingFactors indices to accumulate over (input). There
* There should be one set for each of parentBufferIndices
* @param count Number of partialsBuffers (input)
* @param outSumLogLikelihood Pointer to destination for resulting sum of log likelihoods (output)
* @param outSumFirstDerivative Pointer to destination for resulting sum of first derivatives (output)
* @param outSumSecondDerivative Pointer to destination for resulting sum of second derivatives (output)
*/
void calculateEdgeLogLikelihoods(int[] parentBufferIndices,
int[] childBufferIndices,
int[] probabilityIndices,
int[] firstDerivativeIndices,
int[] secondDerivativeIndices,
int[] categoryWeightsIndices,
int[] stateFrequenciesIndices,
int[] cumulativeScaleIndices,
int count,
double[] outSumLogLikelihood,
double[] outSumFirstDerivative,
double[] outSumSecondDerivative);
/**
* Return the individual log likelihoods for each site pattern.
*
* @param outLogLikelihoods an array in which the likelihoods will be put
*/
void getSiteLogLikelihoods(double[] outLogLikelihoods);
/**
* Get a details class for this instance
* @return
*/
public InstanceDetails getDetails();
}
|