1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
/**
* @file Beagle.java
*
* Copyright 2009-2016 Phylogenetic Likelihood Working Group
*
* This file is part of BEAGLE.
*
* BEAGLE is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of
* the License, or (at your option) any later version.
*
* BEAGLE is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with BEAGLE. If not, see
* <http://www.gnu.org/licenses/>.
*
* @brief This file documents the API as well as header for the
* Broad-platform Evolutionary Analysis General Likelihood Evaluator
*
* KEY CONCEPTS
*
* The key to BEAGLE performance lies in delivering fine-scale
* parallelization while minimizing data transfer and memory copy overhead.
* To accomplish this, the library lacks the concept of data structure for
* a tree, in spite of the intended use for phylogenetic analysis. Instead,
* BEAGLE acts directly on flexibly indexed data storage (called buffers)
* for observed character states and partial likelihoods. The client
* program can set the input buffers to reflect the data and can calculate
* the likelihood of a particular phylogeny by invoking likelihood
* calculations on the appropriate input and output buffers in the correct
* order. Because of this design simplicity, the library can support many
* different tree inference algorithms and likelihood calculation on a
* variety of models. Arbitrary numbers of states can be used, as can
* nonreversible substitution matrices via complex eigen decompositions,
* and mixture models with multiple rate categories and/or multiple eigen
* decompositions. Finally, BEAGLE application programming interface (API)
* calls can be asynchronous, allowing the calling program to implement
* other coarse-scale parallelization schemes such as evaluating
* independent genes or running concurrent Markov chains.
*
* USAGE
*
* To use the library, a client program first creates an instance of BEAGLE
* by calling beagleCreateInstance; multiple instances per client are
* possible and encouraged. All additional functions are called with a
* reference to this instance. The client program can optionally request
* that an instance run on certain hardware (e.g., a GPU) or have
* particular features (e.g., double-precision math). Next, the client
* program must specify the data dimensions and specify key aspects of the
* phylogenetic model. Character state data are then loaded and can be in
* the form of discrete observed states or partial likelihoods for
* ambiguous characters. The observed data are usually unchanging and
* loaded only once at the start to minimize memory copy overhead. The
* character data can be compressed into unique “site patterns” and
* associated weights for each. The parameters of the substitution process
* can then be specified, including the equilibrium state frequencies, the
* rates for one or more substitution rate categories and their weights,
* and finally, the eigen decomposition for the substitution process.
*
* In order to calculate the likelihood of a particular tree, the client
* program then specifies a series of integration operations that
* correspond to steps in Felsenstein’s algorithm. Finite-time transition
* probabilities for each edge are loaded directly if considering a
* nondiagonalizable model or calculated in parallel from the eigen
* decomposition and edge lengths specified. This is performed within
* BEAGLE’s memory space to minimize data transfers. A single function call
* will then request one or more integration operations to calculate
* partial likelihoods over some or all nodes. The operations are performed
* in the order they are provided, typically dictated by a postorder
* traversal of the tree topology. The client needs only specify nodes for
* which the partial likelihoods need updating, but it is up to the calling
* software to keep track of these dependencies. The final step in
* evaluating the phylogenetic model is done using an API call that yields
* a single log likelihood for the model given the data.
*
* Aspects of the BEAGLE API design support both maximum likelihood (ML)
* and Bayesian phylogenetic tree inference. For ML inference, API calls
* can calculate first and second derivatives of the likelihood with
* respect to the lengths of edges (branches). In both cases, BEAGLE
* provides the ability to cache and reuse previously computed partial
* likelihood results, which can yield a tremendous speedup over
* recomputing the entire likelihood every time a new phylogenetic model is
* evaluated.
*
* @author Likelihood API Working Group
*
* @author Daniel Ayres
* @author Peter Beerli
* @author Michael Cummings
* @author Aaron Darling
* @author Mark Holder
* @author John Huelsenbeck
* @author Paul Lewis
* @author Michael Ott
* @author Andrew Rambaut
* @author Fredrik Ronquist
* @author Marc Suchard
* @author David Swofford
* @author Derrick Zwickl
*
*/
package beagle;
import java.io.Serializable;
/**
* Beagle - An interface exposing the BEAGLE likelihood evaluation library.
*
* This interface mirrors the beagle.h API but it for a single instance only.
* It is intended to be used by JNI wrappers of the BEAGLE library and for
* Java implementations for testing purposes. BeagleFactory handles the creation
* of specific istances.
*
* @author Andrew Rambaut
* @author Marc A. Suchard
* @version $Id:$
*/
public interface Beagle extends Serializable {
public static int OPERATION_TUPLE_SIZE = 7;
public static int PARTITION_OPERATION_TUPLE_SIZE = 9;
public static int NONE = -1;
/**
* Finalize this instance
*
* This function finalizes the instance by releasing allocated memory
*/
void finalize() throws Throwable;
/**
* Set number of threads for native CPU implementation
*
* This function sets the number of worker threads to be used with a native
* CPU implementation. It should only be called after beagleCreateInstance and
* requires the THREADING_CPP flag to be set. It has no effect on GPU-based
* implementations. It has no effect with the default THREADING_NONE setting.
* If THREADING_CPP is set and this function is not called BEAGLE will use
* a heuristic to set an appropriate number of threads.
*
* @param threadCount Number of threads (input)
*/
void setCPUThreadCount(int threadCount);
/**
* Set the weights for each pattern
* @param patternWeights Array containing patternCount weights
*/
void setPatternWeights(final double[] patternWeights);
/**
* Set pattern partition assignments
*
* This function sets the vector of pattern partition indices for an instance. It should
* only be called after setTipPartials.
*
* @param partitionCount Number of partitions
* @param patternPartitions Array containing partitionCount partition indices (input)
*/
void setPatternPartitions(int partitionCount, final int[] patternPartitions);
/**
* Set the compressed state representation for tip node
*
* This function copies a compact state representation into an instance buffer.
* Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
* The inStates array should be patternCount in length (replication across categoryCount is not
* required).
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param inStates Pointer to compressed states (input)
*/
void setTipStates(
int tipIndex,
final int[] inStates);
/**
* Get the compressed state representation for tip node
*
* This function copies a compact state representation from an instance buffer.
* Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
* The inStates array should be patternCount in length (replication across categoryCount is not
* required).
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param outStates Pointer to compressed states (input)
*/
void getTipStates(
int tipIndex,
final int[] outStates);
/**
* Set an instance partials buffer
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount in length. For most applications this will be used
* to set the partial likelihoods for the observed states. Internally, the partials will be copied
* categoryCount times.
*
* @param tipIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*/
void setTipPartials(
int tipIndex,
final double[] inPartials);
/**
* Set an instance partials buffer
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param bufferIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*/
void setPartials(
int bufferIndex,
final double[] inPartials);
/**
* Get partials from an instance buffer
*
* This function copies an array of partials from an instance buffer. The inPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param bufferIndex Index of destination partialsBuffer (input)
* @param scaleIndex Index of scaleBuffer to apply to partials (input)
* @param outPartials Pointer to which to receive partialsBuffer (output)
*/
void getPartials(
int bufferIndex,
int scaleIndex,
final double[] outPartials);
/**
* Get scale factors from instance buffer on log-scale
*
* This function copies an array of scale factors from an instance buffer. The outFactors array should
* be patternCount in length.
*
* @param scaleIndex Index of scaleBuffer to get (input)
* @param outFactors Pointer to which to receive partialsBuffer (output)
*/
void getLogScaleFactors(
int scaleIndex,
final double[] outFactors);
/**
* Set an eigen-decomposition buffer
*
* This function copies an eigen-decomposition into a instance buffer.
*
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param inEigenVectors Flattened matrix (stateCount x stateCount) of eigen-vectors (input)
* @param inInverseEigenVectors Flattened matrix (stateCount x stateCount) of inverse-eigen-vectors (input)
* @param inEigenValues Vector of eigenvalues
*/
void setEigenDecomposition(
int eigenIndex,
final double[] inEigenVectors,
final double[] inInverseEigenVectors,
final double[] inEigenValues);
/**
* Set a set of state frequences. These will probably correspond to an
* eigen-system.
*
* @param stateFrequenciesIndex the index of the frequency buffer
* @param stateFrequencies the array of frequences (stateCount)
*/
void setStateFrequencies(int stateFrequenciesIndex,
final double[] stateFrequencies);
/**
* Set a set of category weights. These will probably correspond to an
* eigen-system.
*
* @param categoryWeightsIndex the index of the buffer
* @param categoryWeights the array of weights
*/
void setCategoryWeights(int categoryWeightsIndex,
final double[] categoryWeights);
/**
* Set default category rates buffer
*
* This function sets the default vector of category rates for an instance.
*
* @param inCategoryRates Array containing categoryCount rate scalers (input)
*/
void setCategoryRates(final double[] inCategoryRates);
/**
* Set a category rates buffer
*
* This function sets the vector of category rates for a given buffer in an instance.
*
* @param categoryRatesIndex the index of the buffer
* @param inCategoryRates Array containing categoryCount rate scalers (input)
*/
void setCategoryRatesWithIndex(int categoryRatesIndex,
final double[] inCategoryRates);
/**
* Convolve lists of transition probability matrices
*
* This function convolves two lists of transition probability matrices.
*
* @param firstIndices List of indices of the first transition probability matrices to convolve (input)
* @param secondIndices List of indices of the second transition probability matrices to convolve (input)
* @param resultIndices List of indices of resulting transition probability matrices (input)
* @param matrixCount Lenght of lists
*/
void convolveTransitionMatrices(
final int[] firstIndices,
final int[] secondIndices,
final int[] resultIndices,
int matrixCount);
/**
* Calculate a list of transition probability matrices
*
* This function calculates a list of transition probabilities matrices and their first and
* second derivatives (if requested).
*
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param probabilityIndices List of indices of transition probability matrices to update (input)
* @param firstDerivativeIndices List of indices of first derivative matrices to update (input, NULL implies no calculation)
* @param secondDervativeIndices List of indices of second derivative matrices to update (input, NULL implies no calculation)
* @param edgeLengths List of edge lengths with which to perform calculations (input)
* @param count Length of lists
*/
void updateTransitionMatrices(
int eigenIndex,
final int[] probabilityIndices,
final int[] firstDerivativeIndices,
final int[] secondDervativeIndices,
final double[] edgeLengths,
int count);
/**
* Calculate a list of transition probability matrices with multiple models
*
* This function calculates a list of transition probabilities matrices and their first and
* second derivatives (if requested).
*
* @param eigenIndices List of indices of eigen-decomposition buffers (input)
* @param categoryRateIndices List of indices of category-rate buffers (input)
* @param probabilityIndices List of indices of transition probability matrices to update (input)
* @param firstDerivativeIndices List of indices of first derivative matrices to update (input, NULL implies no calculation)
* @param secondDervativeIndices List of indices of second derivative matrices to update (input, NULL implies no calculation)
* @param edgeLengths List of edge lengths with which to perform calculations (input)
* @param count Length of lists
*/
void updateTransitionMatricesWithMultipleModels(
final int[] eigenIndices,
final int[] categoryRateIndices,
final int[] probabilityIndices,
final int[] firstDerivativeIndices,
final int[] secondDervativeIndices,
final double[] edgeLengths,
int count);
/**
* This function copies a finite-time transition probability matrix into a matrix buffer. This function
* is used when the application wishes to explicitly set the transition probability matrix rather than
* using the setEigenDecomposition and updateTransitionMatrices functions. The inMatrix array should be
* of size stateCount * stateCount * categoryCount and will contain one matrix for each rate category.
*
* This function copies a finite-time transition probability matrix into a matrix buffer.
* @param matrixIndex Index of matrix buffer (input)
* @param inMatrix Pointer to source transition probability matrix (input)
* @param paddedValue Value to be used for padding for ambiguous states (e.g. 1 for probability matrices, 0 for derivative matrices) (input)
*/
void setTransitionMatrix(
int matrixIndex, /**< Index of matrix buffer (input) */
final double[] inMatrix, /**< Pointer to source transition probability matrix (input) */
double paddedValue);
/**
* Get a finite-time transition probability matrix
*
* This function copies a finite-time transition matrix buffer into the array outMatrix. The
* outMatrix array should be of size stateCount * stateCount * categoryCount and will be filled
* with one matrix for each rate category.
*
* @param matrixIndex Index of matrix buffer (input)
* @param outMatrix Pointer to destination transition probability matrix (output)
*
*/
void getTransitionMatrix(int matrixIndex,
double[] outMatrix);
/**
* Calculate or queue for calculation partials using a list of operations
*
* This function either calculates or queues for calculation a list partials. Implementations
* supporting ASYNCH may queue these calculations while other implementations perform these
* operations immediately and in order.
*
* If partitions have been set via setPatternPartitions, operationCount should be a
* multiple of partitionCount.
*
* Operations list is a list of 7-tuple integer indices, with one 7-tuple per operation.
* Format of 7-tuple operation: {destinationPartials,
* destinationScaleWrite,
* destinationScaleRead,
* child1Partials,
* child1TransitionMatrix,
* child2Partials,
* child2TransitionMatrix}
*
* @param operations List of 7-tuples specifying operations (input)
* @param operationCount Number of operations (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to store accumulated factors (input)
*
*/
void updatePartials(
final int[] operations,
int operationCount,
int cumulativeScaleIndex);
/**
* Calculate or queue for calculating partials by partition using a list of operations
*
* This function either calculates or queues for calculation a list partials. Implementations
* supporting ASYNCH may queue these calculations while other implementations perform these
* operations immediately and in order.
*
* If partitions have been set via setPatternPartitions, operationCount should be a
* multiple of partitionCount.
*
* Operations list is a list of 9-tuple integer indices, with one 9-tuple per operation.
* Format of 9-tuple operation: {destinationPartials,
* destinationScaleWrite,
* destinationScaleRead,
* child1Partials,
* child1TransitionMatrix,
* child2Partials,
* child2TransitionMatrix,
* partition,
* cumulativeScaleIndex}
*
* @param operations List of 9-tuples specifying operations (input)
* @param operationCount Number of operations (input)
*
*/
void updatePartialsByPartition(
final int[] operations,
int operationCount);
/**
* Accumulate scale factors
*
* This function adds (log) scale factors from a list of scaleBuffers to a cumulative scale
* buffer. It is used to calculate the marginal scaling at a specific node for each site.
*
* @param scaleIndices List of scaleBuffers to add (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to accumulate factors into (input)
*/
void accumulateScaleFactors(
final int[] scaleIndices,
final int count,
final int cumulativeScaleIndex
);
/**
* Accumulate scale factors by partition
*
* This function adds (log) scale factors from a list of scaleBuffers to a cumulative scale
* buffer. It is used to calculate the marginal scaling at a specific node for each site.
*
* @param scaleIndices List of scaleBuffers to add (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to accumulate factors into (input)
* @param partitionIndex Index number of partition (input)
*/
void accumulateScaleFactorsByPartition(
final int[] scaleIndices,
int count,
int cumulativeScaleIndex,
int partitionIndex
);
/**
* Remove scale factors
*
* This function removes (log) scale factors from a cumulative scale buffer. The
* scale factors to be removed are indicated in a list of scaleBuffers.
*
* @param scaleIndices List of scaleBuffers to remove (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer containing accumulated factors (input)
*/
void removeScaleFactors(
final int[] scaleIndices,
final int count,
final int cumulativeScaleIndex
);
/**
* Remove scale factors by partition
*
* This function removes (log) scale factors from a cumulative scale buffer. The
* scale factors to be removed are indicated in a list of scaleBuffers.
*
* @param scaleIndices List of scaleBuffers to remove (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer containing accumulated factors (input)
* @param partitionIndex Index number of partition (input)
*/
void removeScaleFactorsByPartition(
final int[] scaleIndices,
final int count,
final int cumulativeScaleIndex,
final int partitionIndex
);
/**
* Copy scale factors
*
* This function copies scale factors from one buffer to another.
*
* @param destScalingIndex Destination scaleBuffer (input)
* @param srcScalingIndex Source scaleBuffer (input)
*/
void copyScaleFactors(
int destScalingIndex,
int srcScalingIndex
);
/**
* Reset scalefactors
*
* This function resets a cumulative scale buffer.
*
* @param cumulativeScaleIndex Index number of cumulative scaleBuffer (input)
*/
void resetScaleFactors(int cumulativeScaleIndex);
/**
* Reset scalefactors by partition
*
* This function resets a cumulative scale buffer.
*
* @param cumulativeScaleIndex Index number of cumulative scaleBuffer (input)
* @param partitionIndex Index number of partition (input)
*/
void resetScaleFactorsByPartition(int cumulativeScaleIndex, int partitionIndex);
/**
* Calculate site log likelihoods at a root node
*
* This function integrates a list of partials at a node with respect to a set of partials-weights and
* state frequencies to return the log likelihoods for each site
*
* @param bufferIndices List of partialsBuffer indices to integrate (input)
* @param categoryWeightsIndices List of indices of category weights to apply to each partialsBuffer (input)
* should be one categoryCount sized set for each of
* parentBufferIndices
* @param stateFrequenciesIndices List of indices of state frequencies for each partialsBuffer (input)
* should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scalingFactors indices to accumulate over (input). There
* should be one set for each of parentBufferIndices
* @param count Number of partialsBuffer to integrate (input)
* @param outSumLogLikelihood Pointer to destination for resulting sum of log likelihoods (output)
*/
void calculateRootLogLikelihoods(int[] bufferIndices,
int[] categoryWeightsIndices,
int[] stateFrequenciesIndices,
int[] cumulativeScaleIndices,
int count,
double[] outSumLogLikelihood);
/**
* Calculate site log likelihoods at a root node by partition
*
* This function integrates a list of partials at a node with respect to a set of partials-weights and
* state frequencies to return the log likelihoods for each site
*
* @param bufferIndices List of partialsBuffer indices to integrate (input)
* @param categoryWeightsIndices List of indices of category weights to apply to each partialsBuffer (input)
* should be one categoryCount sized set for each of
* parentBufferIndices
* @param stateFrequenciesIndices List of indices of state frequencies for each partialsBuffer (input)
* should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scalingFactors indices to accumulate over (input). There
* should be one set for each of parentBufferIndices
* @param partitionIndices List of partition indices indicating which sites in each
* partialsBuffer should be used (input). There should be one
* index for each of bufferIndices
* @param partitionCount Number of partialsBuffer to integrate (input)
* @param count Number of sets of partitions to integrate across (input)
* @param outSumLogLikelihoodByPartition Pointer to destination for resulting sum of per partition log likelihoods (output)
* @param outSumLogLikelihood Pointer to destination for resulting sum of log likelihoods (output)
*/
void calculateRootLogLikelihoodsByPartition(int[] bufferIndices,
int[] categoryWeightsIndices,
int[] stateFrequenciesIndices,
int[] cumulativeScaleIndices,
int[] partitionIndices,
int partitionCount,
int count,
double[] outSumLogLikelihoodByPartition,
double[] outSumLogLikelihood);
/**
* Calculate site log likelihoods and derivatives along an edge
*
* This function integrates at list of partials at a parent and child node with respect
* to a set of partials-weights and state frequencies to return the log likelihoods
* and first and second derivatives for each site
*
* @param parentBufferIndices List of indices of parent partialsBuffers (input)
* @param childBufferIndices List of indices of child partialsBuffers (input)
* @param probabilityIndices List indices of transition probability matrices for this edge (input)
* @param firstDerivativeIndices List indices of first derivative matrices (input)
* @param secondDerivativeIndices List indices of second derivative matrices (input)
* @param categoryWeightsIndices List of indices of category weights to apply to each partialsBuffer (input)
* @param stateFrequenciesIndices List of indices of state frequencies for each partialsBuffer (input)
* There should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scalingFactors indices to accumulate over (input). There
* There should be one set for each of parentBufferIndices
* @param count Number of partialsBuffers (input)
* @param outSumLogLikelihood Pointer to destination for resulting sum of log likelihoods (output)
* @param outSumFirstDerivative Pointer to destination for resulting sum of first derivatives (output)
* @param outSumSecondDerivative Pointer to destination for resulting sum of second derivatives (output)
*/
/*void calculateEdgeLogLikelihoods(int[] parentBufferIndices,
int[] childBufferIndices,
int[] probabilityIndices,
int[] firstDerivativeIndices,
int[] secondDerivativeIndices,
int[] categoryWeightsIndices,
int[] stateFrequenciesIndices,
int[] cumulativeScaleIndices,
int count,
double[] outSumLogLikelihood,
double[] outSumFirstDerivative,
double[] outSumSecondDerivative);*/
/**
* Return the individual log likelihoods for each site pattern.
*
* @param outLogLikelihoods an array in which the likelihoods will be put
*/
void getSiteLogLikelihoods(double[] outLogLikelihoods);
/**
* Get a details class for this instance
* @return
*/
public InstanceDetails getDetails();
}
|