File: hmctest.R

package info (click to toggle)
libhmsbeagle 4.0.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,436 kB
  • sloc: xml: 133,356; cpp: 36,477; ansic: 5,842; java: 2,400; python: 643; sh: 338; makefile: 50
file content (239 lines) | stat: -rw-r--r-- 9,448 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# This file helps to calculate the same likelihood as in hmctest.cpp
# Xiang Ji
# xji3@ncsu.edu

rm(list=ls())  # clean up workspace
getLoglikelihood <- function(data, rate.param, blen.param, stationary.dist, rates = NULL, weights = NULL){
  library(Matrix)
  
  data.1 <- data$data.1
  data.2 <- data$data.2
  data.3 <- data$data.3
  
  pi.A <- rate.param$pi.A
  pi.C <- rate.param$pi.C
  pi.G <- rate.param$pi.G
  pi.T <- rate.param$pi.T
  kappa <- rate.param$kappa
  
  Q <- matrix(c(0.0, pi.C, kappa * pi.G, pi.T, 
                pi.A, 0.0, pi.G, kappa*pi.T,
                kappa*pi.A, pi.C, 0.0, pi.T,
                pi.A, kappa*pi.C, pi.G, 0.0), 4, 4, byrow=TRUE)
  Q <- Q - diag(rowSums(Q))
  # Normalize Q matrix to have unit being expected number of changes per site
  Q.normalized <- Q / sum(-stationary.dist * diag(Q))
  Q <- Q.normalized  
  
  if(is.null(rates) | is.null(weights)){
    rates = c(1.0)
    weights = c(1.0)
  }
  
  likelihood.mat <- NULL
  for(i in 1:length(rates)){
    ri = rates[i]
    wi = weights[i]
    
    blen.A3 <- blen.param$blen.A3 * ri
    blen.A2 <- blen.param$blen.A2 * ri
    blen.BA <- blen.param$blen.BA * ri
    blen.B1 <- blen.param$blen.B1 * ri
    
    Ptr.A3 <- expm(Q*blen.A3)
    Ptr.A2 <- expm(Q*blen.A2)
    Ptr.BA <- expm(Q*blen.BA)
    Ptr.B1 <- expm(Q*blen.B1)
    
    # Now calculate left (#.1) and right (#.2) post-order (conditional likelihood) of each internal node
    A.1 <- Ptr.A3 %*% data.3
    A.2 <- Ptr.A2 %*% data.2
    A.post.order <- A.1 * A.2
    B.1 <- Ptr.BA %*% A.post.order
    B.2 <- Ptr.B1 %*% data.1
    B.post.order <- B.1 * B.2
    
    likelihood.mat <- rbind(likelihood.mat, wi*colSums(stationary.dist * B.post.order))
  }
  
  return((log(colSums(likelihood.mat))))
}

# Two rate categories
rates = c(3. * 1:2 / 5.)
weights = c(1:2 / 3.)

# One rate category
# rates = c(1.0)
# weights = c(1.0)

library(Matrix)
# Define branch lengths first
blen.A3 <- 0.6
blen.A2 <- 0.6
blen.BA <- 0.7
blen.B1 <- 1.3

# Define data vectors at tips
# data.1 = "AAAT"
# data.2 = "GAGT"
# data.3 = "GAGG"
data.1 <- matrix(c(1., 0., 0., 0., 
                   1., 0., 0., 0.,
                   1., 0., 0., 0.,
                   0., 0., 0., 1.), 4, 4)
data.2 <- matrix(c(0., 0., 1., 0.,
                   1., 0., 0., 0.,
                   0., 0., 1., 0.,
                   0., 0., 0., 1.), 4, 4)
data.3 <- matrix(c(0., 0., 1., 0., 
                   1., 0., 0., 0.,
                   0., 0., 1., 0.,
                   0., 0., 1., 0.), 4, 4)

# add-in eigen decomposition
evec <- matrix(c(0.9819805,  0.040022305,  0.04454354,  -0.5,
                 -0.1091089, -0.002488732, 0.81606029,  -0.5,
                 -0.1091089, -0.896939683, -0.11849713, -0.5,
                 -0.1091089,  0.440330814, -0.56393254, -0.5), 4, 4, byrow=T)

ivec <- matrix(c(0.9165151, -0.3533241, -0.1573578, -0.4058332,
                 0.0,  0.2702596, -0.8372848,  0.5670252,
                 0.0,  0.8113638, -0.2686725, -0.5426913,
                 -0.2, -0.6, -0.4, -0.8), 4, 4, byrow = T)

eval <- c( -1.428571, -1.428571, -1.428571, 0.0)

# Now define stationary nucleotide frequency
# <parameter id="hky.frequencies" value="0.1 0.3 0.2 0.4"/>
# 
pi.A <- 0.1
pi.C <- 0.3
pi.G <- 0.2
pi.T <- 0.4
kappa <- 1.0

# stationary dist
stationary.dist <- c(pi.A, pi.C, pi.G, pi.T)
# Now construct rate matrix Q
Q <- matrix(c(0.0, pi.C, kappa * pi.G, pi.T, 
              pi.A, 0.0, pi.G, kappa*pi.T,
              kappa*pi.A, pi.C, 0.0, pi.T,
              pi.A, kappa*pi.C, pi.G, 0.0), 4, 4, byrow=TRUE)
Q <- Q - diag(rowSums(Q))

# Normalize Q matrix to have unit being expected number of changes per site
Q.normalized <- Q / sum(-stationary.dist * diag(Q))
Q.normalized <- evec %*% diag(eval) %*% ivec

# update Q by the normalized matrix, this step is just for sanity check that can be commented out
Q <- Q.normalized

A.gradient.mat <- NULL
tip.1.gradient.mat <- NULL
tip.2.gradient.mat <- NULL
tip.3.gradient.mat <- NULL
likelihood.mat <- NULL

A.pre.order.list <- NULL
B.pre.order.list <- NULL
tip.1.pre.order.list <- NULL
tip.2.pre.order.list <- NULL
tip.3.pre.order.list <- NULL
for(i in 1:length(rates)){
  # Ptr matrices
  Ptr.A3 <- evec %*% diag(exp(eval * blen.A3 * rates[i])) %*% ivec
  Ptr.A2 <- evec %*% diag(exp(eval * blen.A2 * rates[i])) %*% ivec
  Ptr.BA <- evec %*% diag(exp(eval * blen.BA * rates[i])) %*% ivec
  Ptr.B1 <- evec %*% diag(exp(eval * blen.B1 * rates[i])) %*% ivec
  
  # Now calculate left (#.1) and right (#.2) post-order (conditional likelihood) of each internal node
  A.1 <- Ptr.A3 %*% data.3
  A.2 <- Ptr.A2 %*% data.2
  A.post.order <- A.1 * A.2
  B.1 <- Ptr.BA %*% A.post.order
  B.2 <- Ptr.B1 %*% data.1
  B.post.order <- B.1 * B.2
  
  # Now show the posterior probability of node B
  B.posterior <- B.post.order * stationary.dist
  B.posterior/sum(B.posterior)
  
  likelihood.mat <- rbind(likelihood.mat, (colSums(stationary.dist * B.post.order)))
  
  # Now calculate the pre-order traversals
  B.pre.order <- stationary.dist %*% matrix(1., 1, dim(data.1)[2])
  A.pre.order <- crossprod(Ptr.BA, (B.pre.order * B.2))
  #A.pre.order <- t(t(A.pre.order) / colSums(A.pre.order))
  
  # Now update the pre-order partials on tips
  tip.1.pre.order <- crossprod(Ptr.B1, B.pre.order*B.1)
  #tip.1.pre.order <- t(t(tip.1.pre.order) / colSums(tip.1.pre.order))
  
  tip.2.pre.order <- crossprod(Ptr.A2, A.pre.order*A.1)
  #tip.2.pre.order <- t(t(tip.2.pre.order) / colSums(tip.2.pre.order))
  
  tip.3.pre.order <- crossprod(Ptr.A3, A.pre.order*A.2)
  #tip.3.pre.order <- t(t(tip.3.pre.order) / colSums(tip.3.pre.order))
  
  # output pre-order partials to screen in the same order as hmctest.cpp
  
  B.pre.order.list[[i]] <- t(B.pre.order)
  A.pre.order.list [[i]] <- t(A.pre.order)
  tip.1.pre.order.list[[i]] <- t(tip.1.pre.order)
  tip.3.pre.order.list[[i]] <- t(tip.3.pre.order)
  tip.2.pre.order.list[[i]] <- t(tip.2.pre.order)

  # Now caculate branch length gradient for 1st site
  A.gradient <- NULL
  tip.1.gradient <- NULL
  tip.2.gradient <- NULL
  tip.3.gradient <- NULL
  for(i in 1:4){
    A.gradient <- c(A.gradient, A.post.order[, i] %*% t(Q.normalized) %*% A.pre.order[, i] / sum(A.post.order[, i] * A.pre.order[, i]))
    tip.1.gradient <- c(tip.1.gradient, data.1[, i] %*% t(Q.normalized) %*% tip.1.pre.order[, i] / sum(data.1[, i] * tip.1.pre.order[, i]))
    tip.2.gradient <- c(tip.2.gradient, data.2[, i] %*% t(Q.normalized) %*% tip.2.pre.order[, i] / sum(data.2[, i] * tip.2.pre.order[, i]))
    tip.3.gradient <- c(tip.3.gradient, data.3[, i] %*% t(Q.normalized) %*% tip.3.pre.order[, i] / sum(data.3[, i] * tip.3.pre.order[, i]))
  }
  
  A.gradient.mat <- rbind(A.gradient.mat, A.gradient)
  tip.1.gradient.mat <- rbind(tip.1.gradient.mat, tip.1.gradient)
  tip.2.gradient.mat <- rbind(tip.2.gradient.mat, tip.2.gradient)
  tip.3.gradient.mat <- rbind(tip.3.gradient.mat, tip.3.gradient)
}


data <- list(data.1 = data.1, data.2 = data.2, data.3 = data.3)
rate.param <- list(pi.A = pi.A, pi.C = pi.C, pi.G = pi.G, pi.T = pi.T, kappa = kappa)
blen.param <- list(blen.A2 = blen.A2, blen.A3 = blen.A3, blen.B1 = blen.B1, blen.BA = blen.BA)
ll <- getLoglikelihood(data, rate.param, blen.param, stationary.dist, rates, weights)

print(B.pre.order.list)
# now numerically calculate blen derivatives
dl <- 1e-7
blen.param.dl <- list(blen.A2 = blen.A2, blen.A3 = blen.A3, blen.B1 = blen.B1, blen.BA = blen.BA * (1+dl))
ll.dl <- getLoglikelihood(data, rate.param, blen.param.dl, stationary.dist, rates, weights)
A.gradient.numerical <- (ll.dl - ll)/(blen.BA * dl)
A.gradient <- colSums(A.gradient.mat * (weights * rates * likelihood.mat))/colSums(weights * likelihood.mat)
cat("Gradient for branch (of node) 3: \n   ", A.gradient.numerical, " (numerical)\n   ", A.gradient, " \n")
print(A.pre.order.list)

blen.param.dl <- list(blen.A2 = blen.A2, blen.A3 = blen.A3, blen.B1 = blen.B1 * (1+dl), blen.BA = blen.BA)
tip.1.gradient.numerical <- (getLoglikelihood(data, rate.param, blen.param.dl, stationary.dist, rates, weights) - ll)/(blen.B1 * dl)
tip.1.gradient <- colSums(tip.1.gradient.mat * (weights * rates * likelihood.mat))/colSums(weights * likelihood.mat)
cat("Gradient for branch (of node) 2: \n   ", tip.1.gradient.numerical, " (numerical)\n   ", tip.1.gradient, " \n")
print(tip.1.pre.order.list)

blen.param.dl <- list(blen.A2 = blen.A2, blen.A3 = blen.A3 * (1+dl), blen.B1 = blen.B1, blen.BA = blen.BA)
tip.3.gradient.numerical <- (getLoglikelihood(data, rate.param, blen.param.dl, stationary.dist, rates, weights) - ll)/(blen.A3 * dl)
tip.3.gradient <- colSums(tip.3.gradient.mat * (weights * rates * likelihood.mat))/colSums(weights * likelihood.mat)
cat("Gradient for branch (of node) 1: \n   ", tip.3.gradient.numerical, " (numerical)\n   ", tip.3.gradient, " \n")
print(tip.3.pre.order.list)

blen.param.dl <- list(blen.A2 = blen.A2 * (1+dl), blen.A3 = blen.A3, blen.B1 = blen.B1, blen.BA = blen.BA)
tip.2.gradient.numerical <- (getLoglikelihood(data, rate.param, blen.param.dl, stationary.dist, rates, weights) - ll)/(blen.A2 * dl)
tip.2.gradient <- colSums(tip.2.gradient.mat * (weights * rates * likelihood.mat))/colSums(weights * likelihood.mat)
cat("Gradient for branch (of node) 0: \n   ", tip.2.gradient.numerical, " (numerical)\n   ", tip.2.gradient, " \n")
print(tip.2.pre.order.list)

cat("logL = ", formatC(signif(sum(log(colSums(likelihood.mat * weights))),digits=18), digits=16,format="fg", flag="#"))