File: hmctestMedium.R

package info (click to toggle)
libhmsbeagle 4.0.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,436 kB
  • sloc: xml: 133,356; cpp: 36,477; ansic: 5,842; java: 2,400; python: 643; sh: 338; makefile: 50
file content (366 lines) | stat: -rw-r--r-- 21,701 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# This file helps to calculate the same likelihood as in hmctest.cpp
# Xiang Ji
# xji3@ncsu.edu

rm(list=ls())  # clean up workspace
getLoglikelihood <- function(data, rate.param, blen.param, stationary.dist, rates = NULL, weights = NULL, 
                             pattern.weights = NULL){
  library(Matrix)
  
  data.0 <- data$data.0
  data.1 <- data$data.1
  data.2 <- data$data.2
  data.3 <- data$data.3
  data.4 <- data$data.4
  
  
  pi.A <- rate.param$pi.A
  pi.C <- rate.param$pi.C
  pi.G <- rate.param$pi.G
  pi.T <- rate.param$pi.T
  kappa <- rate.param$kappa
  # stationary dist
  stationary.dist <- c(pi.A, pi.C, pi.G, pi.T)
  
  Q <- matrix(c(0.0, pi.C, kappa * pi.G, pi.T, 
                pi.A, 0.0, pi.G, kappa*pi.T,
                kappa*pi.A, pi.C, 0.0, pi.T,
                pi.A, kappa*pi.C, pi.G, 0.0), 4, 4, byrow=TRUE)
  Q <- Q - diag(rowSums(Q))
  # Normalize Q matrix to have unit being expected number of changes per site
  Q.normalized <- Q / sum(-stationary.dist * diag(Q))
  Q <- Q.normalized  
  
  if(is.null(rates) | is.null(weights)){
    rates = c(1.0)
    weights = c(1.0)
  }
  
  if(is.null(pattern.weights)){
    pattern.weights <- matrix(1, 1, dim(data.0)[2])
  }
  
  likelihood.mat <- NULL
  for(i in 1:length(rates)){
    ri = rates[i]
    wi = weights[i]
    
    blen.50 <- blen.param$blen.50 * ri
    blen.51 <- blen.param$blen.51 * ri
    blen.62 <- blen.param$blen.62 * ri
    blen.63 <- blen.param$blen.63 * ri
    blen.75 <- blen.param$blen.75 * ri
    blen.76 <- blen.param$blen.76 * ri
    blen.87 <- blen.param$blen.87 * ri
    blen.84 <- blen.param$blen.84 * ri

    Ptr.50 <- expm(Q*blen.50)
    Ptr.51 <- expm(Q*blen.51)
    Ptr.62 <- expm(Q*blen.62)
    Ptr.63 <- expm(Q*blen.63)
    Ptr.75 <- expm(Q*blen.75)
    Ptr.76 <- expm(Q*blen.76)
    Ptr.87 <- expm(Q*blen.87)
    Ptr.84 <- expm(Q*blen.84)
    
    # Now calculate left (#.1) and right (#.2) post-order (conditional likelihood) of each internal node
    post.5.left <- Ptr.50 %*% data.0
    post.5.right <- Ptr.51 %*% data.1
    post.5 <- post.5.left * post.5.right
    post.6.left <- Ptr.62 %*% data.2
    post.6.right <- Ptr.63 %*% data.3
    post.6 <- post.6.left * post.6.right
    post.7.left <- Ptr.75 %*% post.5
    post.7.right <- Ptr.76 %*% post.6
    post.7 <- post.7.left * post.7.right
    post.8.left <- Ptr.87 %*% post.7
    post.8.right <- Ptr.84 %*% data.4
    post.8 <- post.8.left * post.8.right
    
    likelihood.mat <- rbind(likelihood.mat, wi*colSums(stationary.dist * post.8))
  }
  
  return(sum(log(colSums(likelihood.mat)) * pattern.weights))
}

getData <- function(seq.input){
  if(is.vector(seq.input) & length(seq.input) > 1){
    seq.separate <- seq.input
  }else{
    seq.separate <- strsplit(seq.input, "")[[1]]
  }
  mat.data <- NULL
  for(i in 1:length(seq.separate)){
    if(seq.separate[i] == "A"){
      mat.data <- c(mat.data, 1, 0, 0, 0)
    }else if(seq.separate[i] == "C"){
      mat.data <- c(mat.data, 0, 1, 0, 0)
    }else if(seq.separate[i] == "G"){
      mat.data <- c(mat.data, 0, 0, 1, 0)
    }else if(seq.separate[i] == "T"){
      mat.data <- c(mat.data, 0, 0, 0, 1)
    }
  }
  return(matrix(mat.data, 4, length(seq.separate)))
}

countPatterns <- function(seq.data.frame){
  library(plyr)
  keys <- names(seq.data.frame)
  patterns <- count(seq.data.frame, var = keys)
  results <- list()
  for(key in keys){
    results[[key]] <- getData(get(key, patterns))
  }
  results[["freq"]] <- patterns$freq
  return(results)
}

library(Matrix)

D4Brazi82 <- "ATGCGATGCGTAGGAGTAGGAAACAGAGACTTTGTGGAAGGAGTCTCAGGTGGAGCATGGGTCGACCTGGTGCTAGAACATGGAGGATGCGTCACAACCATGGCCCAGGGAAAACCAACCTTGGATTTTGAACTGACCAAGACAACAGCCAAGGAAGTGGCTCTGTTAAGAACCTATTGCATTGAAGCCTCAATATCAAACATAACTACGGCAACAAGATGTCCAACGCAAGGAGAGCCTTATCTGAAAGAGGAACAGGACCAACAGTACATTTGCCGGAGAGATGTGGTAGACAGAGGGTGGGGCAATGGCTGTGGCTTGTTTGGAAAAGGAGGAGTTGTGACATGTGCGAAGTTTTCATGTTCGGGGAAGATAACAGGCAATTTGGTCCAAATTGAGAACCTTGAATACACAGTGGTTGTAACAGTCCACAATGGAGACACCCATGCAGTAGGAAATGACACATCCAATCATGGAGTTACAGCCATGATAACTCCCAGGTCACCATCGGTGGAAGTCAAATTGCCGGACTATGGAGAACTAACACTCGATTGTGAACCCAGGTCTGGAATTGACTTTAATGAGATGATTCTGATGAAAATGAAAAAGAAAACATGGCTCGTGCATAAGCAATGGTTTTTGGATCTGCCTCTTCCATGGACAGCAGGAGCAGACACATCAGAGGTTCACTGGAATTACAAAGAGAGAATGGTGACATTTAAGGTTCCTCATGCCAAGAGACAGGATGTGACAGTGCTGGGATCTCAGGAAGGAGCCATGCATTCTGCCCTCGCTGGAGCCACAGAAGTGGACTCCGGTGATGGAAATCACATGTTTGCAGGACATCTCAAGTGCAAAGTCCGTATGGAGAAATTGAGAATCAAGGGAATGTCATACACGATGTGTTCAGGAAAGTTTTCAATTGACAAAGAGATGGCAGAAACACAGCATGGGACAACAGTGGTGAAAGTCAAGTATGAAGGTGCTGGAGCTCCGTGTAAAGTCCCCATAGAGATAAGAGATGTAAACAAGGAAAAAGTGGTTGGGCGTATCATCTCATCCACCCCTTTGGCTGAGAATACCAACAGTGTAACCAACATAGAATTAGAACCCCCCTTTGGGGACAGCTACATAGTGATAGGTGTTGGAAACAGCGCATTAACACTCCATTGGTTCAGGAAAGGGAGTTCCATTGGCAAGATGTTTGAGTCCACATACAGAGGTGCAAAACGAATGGCCATTCTAGGTGAAACAGCTTGGGATTTTGGTTCCGTTGGTGGATTGTTCACATCATTGGGAAAGGCTGTGCACCAGGTTTTTGGAAGTGTGTATACAACCATGTTTGGAGGAGTCTCATGGATGATTAGAATCCTAATTGGGTTCTTAGTGTTGTGGATTGGCACGAACTCAAGGAACACTTCAATGGCTATGACGTGCATAGCTGTTGGAGGAATCACTCTGTTTCTGGGCTTCACAGTTCAAGCA"
D4ElSal83 <- "ATGCGATGCGTAGGAGTAGGAAACAGAGACTTTGTGGAAGGAGTCTCAGGTGGAGCATGGGTCGACCTGGTGCTAGAACATGGAGGATGCGTCACAACCATGGCCCAGGGAAAACCAACCTTGGATTTTGAACTGACTAAGACAACAGCCAAGGAAGTGGCTCTGTTAAGAACCTATTGCATTGAAGCCTCAATATCAAACATAACTACGGCAACAAGATGTCCAACGCAAGGAGAGCCTTATCTGAAAGAGGAACAGGACCAACAGTACATTTGCCGGAGAGATGTGGTAGACAGAGGGTGGGGCAATGGCTGTGGCTTGTTTGGAAAAGGAGGAGTTGTGACATGTGCGAAGTTTTCATGTTCGGGGAAGATAACAGGCAATTTGGTCCAAATTGAGAACCTTGAATACACAGTGGTTGTAACAGTCCACAATGGAGACACCCATGCAGTAGGAAATGACACATCCAATCATGGAGTTACAGCCATGATAACTCCCAGGTCACCATCGGTGGAAGTCAAATTGCCGGACTATGGAGAACTAACACTCGATTGTGAACCCAGGTCTGGAATTGACTTTAATGAGATGATTCTGATGAAAATGAAAAAGAAAACATGGCTCGTGCATAAGCAATGGTTTTTGGATCTGCCTCTTCCATGGACAGCAGGAGCAGACACATCAGAGGTTCACTGGAATTACAAAGAGAGAATGGTGACATTTAAGGTTCCTCATGCCAAGAGACAGGATGTGACAGTGCTGGGATCTCAGGAAGGAGCCATGCATTCTGCCCTCGCTGGAGCCACAGAAGTGGACTCCGGTGATGGAAATCATATGTTTGCAGGACATCTCAAGTGCAAAGTCCGTATGGAGAAATTGAGAATCAAGGGAATGTCATACACGATGTGTTCAGGAAAGTTTTCAATTGACAAAGAGATGGCAGAAACACAGCATGGGACAACAGTGGTGAAAGTCAAGTATGAAGGTGCTGGAGCTCCGTGTAAAGTCCCCATAGAGATAAGAGATGTAAACAAGGAAAAAGTGGTTGGGCGTATCATCTCATCCACCCCTTTGGCTGAGAATACCAACAGTGTAACCAACATAGAATTAGAACCCCCCTTTGGGGACAGCTACATAGTGATAGGTGTTGGAAACAGCGCATTAACACTCCATTGGTTCAGGAAAGGGAGTTCCATTGGCAAGATGTTTGAGTCCACATACAGAGGTGCAAAACGAATGGCCATTCTAGGTGAAACAGCTTGGGATTTTGGTTCCGTTGGTGGACTGTTCACATCATTGGGAAAGGCTGTGCACCAGGTTTTTGGAAGTGTGTATACAACCATGTTTGGAGGAGTCTCATGGATGATTAGAATCCTAATTGGGTTCTTAGTGTTGTGGATTGGCACGAACTCAAGGAACACTTCAATGGCTATGACGTGCATAGCTGTTGGAGGAATCACTCTGTTTCTGGGCTTCACAGTTCAAGCA"
D4ElSal94 <- "ATGCGATGCGTAGGAGTAGGAAACAGAGACTTTGTGGAAGGAGTCTCAGGTGGAGCATGGGTCGACCTGGTGCTAGAACATGGAGGATGCGTCACAACCATAGCCCAGGGAAAACCAACCTTGGATTTTGAATTGACTAAGACAACAGCCAAGGAAGTGGCTCTGTTAAGAACCTATTGCATTGAAGCCTCAATATCAAACATAACTACGGCAACAAGATGTCCAACGCAAGGAGAGCCTTATCTGAAAGAGGAACAGGACCAACAGTACATTTGCCGGAGAGATGTGGTAGACAGAGGGTGGGGGAATGGCTGTGGCTTGCTTGGAAAAGGAGGAGTTGTGACATGTGCGAAGTTTTCATGTTCGGGGAAGATAACAGGCAATTTGGTCCAAATTGAGAACCTTGAATACACAGTGGTTGTAACAGTCCACAATGGAGATACCCATGCAGTAGGAAATGACACATCCAATCATGGAGTTACAGCCACGATAACTCCCAGGTCACCATCGGTGGAAGTCAAATTGCCGGACTATGGAGAACTAACACTCGATTGTGAACCCAGATCTGGAATTGATTTTAATGAGATGATTCTGATGAAAATGAAAAAGAAAACATGGCTCGTGCATAAGCAATGGTTTTTGGATCTGCCTCTTCCATGGACAGCAGGAGCAGACACATCAGAGGTTCACTGGAATTACAAAGAGAGAATGGTGACATTCAAGGTTCCTCATGCCAAGAGACAGGATGTGACAGTGCTGGGATCTCAGGAAGGAGCCATGCATTCTGCCCTCGCTGGAGCCACAGAAGTGGACTCCGGTGATGGAAATCACATGTTTGCAGGACATCTCAAGTGCAAAGTCCGCATGGAGAAATTGAGAATCAAGGGAATGTCATACACGATGTGTTCAGGAAAGTTTTCAATTGATAAAGAGATGGCAGAAACACAGCATGGGACAACAGTGGTGAAAGTCAAGTATGAAGGTGCTGGAGCTCCGTGTAAAGTCCCCATAGAGATAAGAGATGTAAACAAGGAAAAAGTGGTTGGGCGTATCATCTCATCCACCCCTTTGGCTGAGAATACCAACAGTGTAACCAACATAGAATTAGAACCCCCCTTTGGGGACAGCTACATAGTGATAGGTGTCGGAAACAGCGCATTAACACTCCATTGGTTCAGGAAAGGGAGTTCCATTGGCAAGATGTTTGAGTCCACATACAGAGGTGCAAAACGAATGGCCATTCTAGGTGAAACAGCTTGGGATTTTGGTTCCGTTGGTGGACTGTTCACATCATTGGGAAAGGCTGTGCACCAGGTTTTTGGAAGTGTGTACACAACCATGTTTGGAGGAGTCTCATGGATGATTAGAATCCTAATTGGGTTCTTAGTGTTATGGATTGGCACGAACTCAAGGAACACTTCAATGGCTATGACGTGCATAGCTGTTGGAGGAATCACTCTGTTTCTGGGCTTCACAGCTCAAGCA"
D4Indon76 <- "ATGCGATGCGTAGGAGTAGGAAACAGAGACTTTGTGGAAGGAGTCTCAGGTGGAGCATGGGTCGATCTGGTGCTAGAACATGGAGGATGCGTCACAACCATGGCCCAGGGAAAACCAACCTTGGATTTTGAACTGACTAAGACAACAGCCAAGGAAGTGGCTCTGTTAAGAACCTATTGCATTGAAGCCTCAATATCAAACATAACCACGGCAACAAGATGTCCAACGCAAGGAGAGCCTTATCTAAAAGAGGAACAAGACCAACAGTACATTTGCCGGAGAGATGTGGTAGACAGAGGGTGGGGCAATGGCTGTGGCTTGTTTGGAAAAGGAGGAGTTGTGACATGTGCGAAGTTTTCATGTTCGGGGAAGATAACAGGCAATTTGGTCCAAATTGAGAACCTTGAATACACAGTGGTTGTAACAGTCCACAATGGAGACACCCATGCAGTAGGAAATGACACATCCAATCATGGAGTTACAGCCACGATAACTCCCAGGTCACCATCGGTGGAAGTCAAATTGCCGGACTATGGAGAACTAACACTCGATTGTGAACCCAGGTCTGGAATTGACTTTAATGAGATGATTCTGATGAAAATGAAAAAGAAAACATGGCTTGTGCATAAGCAATGGTTTTTGGATCTACCTCTACCATGGACAGCAGGAGCAGACACATCAGAGGTTCACTGGAATTACAAAGAGAGAATGGTGACATTTAAGGTTCCTCATGCCAAGAGACAGGATGTGACAGTGCTGGGATCTCAGGAAGGAGCCATGCATTCTGCCCTCGCTGGAGCCACAGAAGTGGACTCCGGTGATGGAAATCACATGTTTGCAGGACATCTCAAGTGCAAAGTCCGTATGGAGAAATTGAGAATCAAGGGAATGTCATACACGATGTGTCCAGGAAAGTTCTCAATTGACAAAGAGATGGCAGAAACACAGCATGGGACAACAGTGGTGAAAGTCAAGTATGAAGGTGCTGGAGCTCCGTGTAAAGTCCCCATAGAGATAAGAGATGTGAACAAGGAAAAAGTGGTTGGGCGTATCATCTCATCCACCCCTTTGGCTGAGAATACCAACAGTGCAACCAACATAGAGTTAGAACCCCCCTTTGGGGACAGCTACATAGTGATAGGTGTTGGAAACAGTGCATTAACACTCCATTGGTTCAGGAAAGGGAGTTCCATTGGCAAGATGTTTGAGTCCACATACAGAGGTGCAAAACGAATGGCCATTCTAGGTGAAACAGCTTGGGATTTTGGTTCCGTTGGTGGACTGCTCACATCATTGGGAAAGGCTGTGCACCAGGTTTTTGGAAGTGTGTATACAACCATGTTTGGAGGAGTCTCATGGATGATTAGAATCCTAATTGGGTTCCTAGTGTTGTGGATTGGCACGAACTCAAGGAACACTTCAATGGCTATGACGTGCATAGCTGTTGGAGGAATCACTCTGTTTCTGGGCTTCACAGTTCAAGCA"
D4Indon77 <- "ATGCGATGCGTAGGAGTAGGAAACAGAGACTTTGTGGAAGGAGTCTCAGGTGGAGCATGGGTCGATCTGGTGCTAGAACATGGAGGATGCGTCACAACCATGGCCCAGGGAAAACCAACCTTGGATTTTGAACTGACTAAGACAACAGCCAAGGAAGTGGCTCTGTTAAGAACCTATTGCATTGAAGCCTCAATATCAAACATAACCACGGCAACAAGATGTCCAACGCAAGGAGAGCCTTATCTAAAAGAGGAACAAGACCAACAGTACATTTGCCGGAGAGATGTGGTAGACAGAGGGTGGGGCAATGGCTGTGGCTTGTTTGGAAAAGGAGGAGTTGTGACATGTGCGAAGTTTTCATGTTCGGGGAAGATAACAGGCAATTTGGTCCAAATTGAGAACCTTGAATACACAGTAGTTGTAACAGTCCACAATGGAGACACCCATGCAGTAGGAAATGACACATCCAACCATGGAGTTACAGCCACGATAACTCCCAGGTCACCATCGGTGGAAGTCAAATTGCCGGACTATGGAGAACTAACACTCGATTGTGAACCCAGGTCTGGAATTGACTTTAATGAGATGATTCTGATGAAAATGAAAAAGAAAACATGGCTTGTGCATAAGCAATGGTTTTTGGATCTACCTCTACCATGGACAGCAGGAGCAGACACATCAGAGGTTCACTGGAATTACAAAGAGAGAATGGTGACATTTAAGGTTCCTCATGCCAAGAGACAGGATGTGACAGTGCTGGGATCTCAGGAAGGAGCCATGCATTCTGCCCTCGCTGGAGCCACAGAAGTGGACTCCGGTGATGGAAATCACATGTTTGCAGGACATCTCAAGTGCAAAGTCCGTATGGAGAAATTGAGAATCAAGGGAATGTCATACACGATGTGTTCAGGAAAGTTCTCAATTGACAAAGAGATGGCAGAAACACAGCATGGGACAACAGTGGTGAAAGTCAAGTATGAAGGTGCTGGAGCTCCGTGCAAAGTCCCCATAGAGATAAGAGATGTAAACAAGGAAAAAGTGGTTGGGCGTATCATCTCATCCACCCCTTTGGCTGAGAATACCAACAGTGTAACCAACATAGAATTAGAACCCCCCTTTGGGGACAGCTACATAGTGATAGGTGTTGGAAACAGTGCATTAACACTCCATTGGTTCAGGAAAGGGAGTTCCATTGGCAAGATGTTTGAGTCCACATACAGAGGTGCAAAACGAATGGCCATTCTAGGTGAAACAGCTTGGGATTTTGGTTCCGTTGGTGGACTGTTCACATCATTGGGAAAGGCTGTGCACCAGGTTTTTGGAAGTGTGTATACAACCATGTTTGGAGGAGTCTCATGGATGATTAGAATCCTAATTGGCTTCTTAGTGTTGTGGATTGGCACGAACTCAAGGAACACTTCAATGGCTATGACGTGCATAGCTGTTGGAGGAATCACTCTGTTTCTGGGCTTCACAGTTCAAGCA"

seq.data.frame <- list(data.2 = strsplit(D4Brazi82, "")[[1]], 
                       data.3 = strsplit(D4ElSal83, "")[[1]], 
                       data.0 = strsplit(D4ElSal94, "")[[1]],
                       data.1 = strsplit(D4Indon76, "")[[1]], 
                       data.4 = strsplit(D4Indon77, "")[[1]])

#https://stats.stackexchange.com/questions/121087/count-the-number-of-each-unique-row-in-a-data-frame
# data.0 <- getData(D4ElSal94)
# data.1 <- getData(D4Indon76)
# data.2 <- getData(D4Brazi82)
# data.3 <- getData(D4ElSal83)
# data.4 <- getData(D4Indon77)

blen.50 <- 25.81403421468474
blen.51 <- 7.814034214684739
blen.62 <- 36.80326223293307
blen.63 <- 37.80326223293307
blen.84 <- 282.8618556834007
blen.75 <- 244.56614874230695
blen.76 <- 221.57692072405862
blen.87 <- 29.481672726408988

# blen.50 <- 0.81403421468474
# blen.51 <- 0.814034214684739
# blen.62 <- 0.80326223293307
# blen.63 <- 0.80326223293307
# blen.84 <- 0.8618556834007
# blen.75 <- 0.56614874230695
# blen.76 <- 0.57692072405862
# blen.87 <- 0.481672726408988

# Now define stationary nucleotide frequency
# <parameter id="hky.frequencies" value="0.1 0.3 0.2 0.4"/>
# 
pi.A <- 0.1
pi.C <- 0.3
pi.G <- 0.2
pi.T <- 0.4
kappa <- 1.0

data <- countPatterns(seq.data.frame)
rate.param <- list(pi.A = pi.A, pi.C = pi.C, pi.G = pi.G, pi.T = pi.T, kappa = kappa)
blen.param <- list(blen.50 = blen.50, blen.51 = blen.51, blen.62 = blen.62, blen.63 = blen.63,
                   blen.84 = blen.84, blen.75 = blen.75, blen.76 = blen.76, blen.87 = blen.87)
pattern.weights <- data$freq

# Two rate categories
# rates = c(3. * 1:2 / 5.)
# weights = c(1:2 / 3.)
rates = c(0.14251623900062188, 1.85748376099937812)
weights = c(0.5, 0.5)


# One rate category
# rates = c(1.0)
# weights = c(1.0)

# # # Four rate categories
# # library(truncdist)
# # rates <- NULL
# # for(rate.iter in 1:4){
# #   lower.bound <- qgamma((rate.iter - 1)/4, 0.5, 0.5)
# #   upper.bound <- qgamma(rate.iter/4, 0.5, 0.5)
# #   rates <- c(rates, extrunc(spec="gamma", lower.bound, upper.bound, 0.5, 0.5))
# # }
# rates = c(0.02907775442778477,
#           0.28071453392572127,
#           0.9247730548197041,
#           2.76543465682679)
# weights = c(0.25, 0.25, 0.25, 0.25)

# # # Five rate categories
# library(truncdist)
# rates <- NULL
# for(rate.iter in 1:5){
#   lower.bound <- qgamma((rate.iter - 1)/5, 0.5, 0.5)
#   upper.bound <- qgamma(rate.iter/5, 0.5, 0.5)
#   rates <- c(rates, extrunc(spec="gamma", lower.bound, upper.bound, 0.5, 0.5))
# }
# weights = c(0.2, 0.2, 0.2, 0.2, 0.2)

# Define data vectors at tips
data.0 <- data$data.0
data.1 <- data$data.1
data.2 <- data$data.2
data.3 <- data$data.3
data.4 <- data$data.4

post.0 <- data.0
post.1 <- data.1
post.2 <- data.2
post.3 <- data.3
post.4 <- data.4
# add-in eigen decomposition
evec <- matrix(c(0.9819805,  0.040022305,  0.04454354,  -0.5,
                 -0.1091089, -0.002488732, 0.81606029,  -0.5,
                 -0.1091089, -0.896939683, -0.11849713, -0.5,
                 -0.1091089,  0.440330814, -0.56393254, -0.5), 4, 4, byrow=T)

ivec <- matrix(c(0.9165151, -0.3533241, -0.1573578, -0.4058332,
                 0.0,  0.2702596, -0.8372848,  0.5670252,
                 0.0,  0.8113638, -0.2686725, -0.5426913,
                 -0.2, -0.6, -0.4, -0.8), 4, 4, byrow = T)

eval <- c( -1.428571, -1.428571, -1.428571, 0.0)

# stationary dist
stationary.dist <- c(pi.A, pi.C, pi.G, pi.T)
# Now construct rate matrix Q
Q <- matrix(c(0.0, pi.C, kappa * pi.G, pi.T,
              pi.A, 0.0, pi.G, kappa*pi.T,
              kappa*pi.A, pi.C, 0.0, pi.T,
              pi.A, kappa*pi.C, pi.G, 0.0), 4, 4, byrow=TRUE)
Q <- Q - diag(rowSums(Q))

# Normalize Q matrix to have unit being expected number of changes per site
Q.normalized <- Q / sum(-stationary.dist * diag(Q))
Q.normalized <- evec %*% diag(eval) %*% ivec

# update Q by the normalized matrix, this step is just for sanity check that can be commented out
Q <- Q.normalized

likelihood.mat <- NULL
node.0.pre.order.list <- NULL
node.1.pre.order.list <- NULL
node.2.pre.order.list <- NULL
node.3.pre.order.list <- NULL
node.4.pre.order.list <- NULL
node.5.pre.order.list <- NULL
node.6.pre.order.list <- NULL
node.7.pre.order.list <- NULL

node.0.gradient.mat <- NULL
node.1.gradient.mat <- NULL
node.2.gradient.mat <- NULL
node.3.gradient.mat <- NULL
node.4.gradient.mat <- NULL
node.5.gradient.mat <- NULL
node.6.gradient.mat <- NULL
node.7.gradient.mat <- NULL
node.8.pre.order <- stationary.dist %*% matrix(1., 1, dim(data.0)[2])
for(i in 1:length(rates)){
  ri = rates[i]
  wi = weights[i]

  blen.50 <- blen.param$blen.50 * ri
  blen.51 <- blen.param$blen.51 * ri
  blen.62 <- blen.param$blen.62 * ri
  blen.63 <- blen.param$blen.63 * ri
  blen.75 <- blen.param$blen.75 * ri
  blen.76 <- blen.param$blen.76 * ri
  blen.87 <- blen.param$blen.87 * ri
  blen.84 <- blen.param$blen.84 * ri

  Ptr.50 <- expm(Q*blen.50)
  Ptr.51 <- expm(Q*blen.51)
  Ptr.62 <- expm(Q*blen.62)
  Ptr.63 <- expm(Q*blen.63)
  Ptr.75 <- expm(Q*blen.75)
  Ptr.76 <- expm(Q*blen.76)
  Ptr.87 <- expm(Q*blen.87)
  Ptr.84 <- expm(Q*blen.84)

  # Now calculate left (#.1) and right (#.2) post-order (conditional likelihood) of each internal node
  post.5.left <- Ptr.50 %*% post.0
  post.5.right <- Ptr.51 %*% post.1
  post.5 <- post.5.left * post.5.right
  post.6.left <- Ptr.62 %*% post.2
  post.6.right <- Ptr.63 %*% post.3
  post.6 <- post.6.left * post.6.right
  post.7.left <- Ptr.75 %*% post.5
  post.7.right <- Ptr.76 %*% post.6
  post.7 <- post.7.left * post.7.right
  post.8.left <- Ptr.87 %*% post.7
  post.8.right <- Ptr.84 %*% post.4
  post.8 <- post.8.left * post.8.right

  likelihood.mat <- rbind(likelihood.mat, wi*colSums(stationary.dist * post.8))

  # Now calculate pre-order partials
  node.7.pre.order <- crossprod(Ptr.87, node.8.pre.order * post.8.right)
  node.4.pre.order <- crossprod(Ptr.84, node.8.pre.order * post.8.left)
  node.5.pre.order <- crossprod(Ptr.75, node.7.pre.order * post.7.right)
  node.6.pre.order <- crossprod(Ptr.76, node.7.pre.order * post.7.left)
  node.0.pre.order <- crossprod(Ptr.50, node.5.pre.order * post.5.right)
  node.1.pre.order <- crossprod(Ptr.51, node.5.pre.order * post.5.left)
  node.2.pre.order <- crossprod(Ptr.62, node.6.pre.order * post.6.right)
  node.3.pre.order <- crossprod(Ptr.63, node.6.pre.order * post.6.left)

  node.0.pre.order.list[[i]] <- t(as.matrix(node.0.pre.order))
  node.1.pre.order.list[[i]] <- t(as.matrix(node.1.pre.order))
  node.2.pre.order.list[[i]] <- t(as.matrix(node.2.pre.order))
  node.3.pre.order.list[[i]] <- t(as.matrix(node.3.pre.order))
  node.4.pre.order.list[[i]] <- t(as.matrix(node.4.pre.order))
  node.5.pre.order.list[[i]] <- t(as.matrix(node.5.pre.order))
  node.6.pre.order.list[[i]] <- t(as.matrix(node.6.pre.order))
  node.7.pre.order.list[[i]] <- t(as.matrix(node.7.pre.order))

  node.0.gradient <- NULL
  node.1.gradient <- NULL
  node.2.gradient <- NULL
  node.3.gradient <- NULL
  node.4.gradient <- NULL
  node.5.gradient <- NULL
  node.6.gradient <- NULL
  node.7.gradient <- NULL
  for(j in 1:length(pattern.weights)){
    node.0.gradient <- c(node.0.gradient, post.0[, j] %*% t(Q.normalized) %*% node.0.pre.order[, j] / sum(post.0[, j] * node.0.pre.order[, j]))
    node.1.gradient <- c(node.1.gradient, post.1[, j] %*% t(Q.normalized) %*% node.1.pre.order[, j] / sum(post.1[, j] * node.1.pre.order[, j]))
    node.2.gradient <- c(node.2.gradient, post.2[, j] %*% t(Q.normalized) %*% node.2.pre.order[, j] / sum(post.2[, j] * node.2.pre.order[, j]))
    node.3.gradient <- c(node.3.gradient, post.3[, j] %*% t(Q.normalized) %*% node.3.pre.order[, j] / sum(post.3[, j] * node.3.pre.order[, j]))
    node.4.gradient <- c(node.4.gradient, post.4[, j] %*% t(Q.normalized) %*% node.4.pre.order[, j] / sum(post.4[, j] * node.4.pre.order[, j]))
    node.5.gradient <- c(node.5.gradient, post.5[, j] %*% t(Q.normalized) %*% node.5.pre.order[, j] / sum(post.5[, j] * node.5.pre.order[, j]))
    node.6.gradient <- c(node.6.gradient, post.6[, j] %*% t(Q.normalized) %*% node.6.pre.order[, j] / sum(post.6[, j] * node.6.pre.order[, j]))
    node.7.gradient <- c(node.7.gradient, post.7[, j] %*% t(Q.normalized) %*% node.7.pre.order[, j] / sum(post.7[, j] * node.7.pre.order[, j]))
  }
  node.0.gradient.mat <- rbind(node.0.gradient.mat, node.0.gradient)
  node.1.gradient.mat <- rbind(node.1.gradient.mat, node.1.gradient)
  node.2.gradient.mat <- rbind(node.2.gradient.mat, node.2.gradient)
  node.3.gradient.mat <- rbind(node.3.gradient.mat, node.3.gradient)
  node.4.gradient.mat <- rbind(node.4.gradient.mat, node.4.gradient)
  node.5.gradient.mat <- rbind(node.5.gradient.mat, node.5.gradient)
  node.6.gradient.mat <- rbind(node.6.gradient.mat, node.6.gradient)
  node.7.gradient.mat <- rbind(node.7.gradient.mat, node.7.gradient)
}
node.0.rate.gradient <- sum(colSums(node.0.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.50
node.1.rate.gradient <- sum(colSums(node.1.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.51
node.2.rate.gradient <- sum(colSums(node.2.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.62
node.3.rate.gradient <- sum(colSums(node.3.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.63
node.4.rate.gradient <- sum(colSums(node.4.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.84
node.5.rate.gradient <- sum(colSums(node.5.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.75
node.6.rate.gradient <- sum(colSums(node.6.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.76
node.7.rate.gradient <- sum(colSums(node.7.gradient.mat * (weights * rates * likelihood.mat)) / colSums(weights * likelihood.mat) * pattern.weights) * blen.param$blen.87

ll <- getLoglikelihood(data, rate.param, blen.param, stationary.dist, rates, weights, pattern.weights)
cat("logL = ", formatC(signif(ll,digits=18), digits=16,format="fg", flag="#"), "\n")
cat("logL = ", formatC(signif(sum(log(colSums(likelihood.mat)) * pattern.weights),digits=18), digits=16,format="fg", flag="#"), "\n")

print(c(node.0.rate.gradient, node.1.rate.gradient, node.2.rate.gradient, node.3.rate.gradient, node.4.rate.gradient, node.5.rate.gradient,
        node.6.rate.gradient, node.7.rate.gradient))