File: hmctestMedium.cpp

package info (click to toggle)
libhmsbeagle 4.0.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,436 kB
  • sloc: xml: 133,356; cpp: 36,477; ansic: 5,842; java: 2,400; python: 643; sh: 338; makefile: 50
file content (564 lines) | stat: -rw-r--r-- 22,121 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
//
// Created by Xiang Ji on 2/28/18.
//

/*
 *  tinyTest.c
 *  BEAGLE
 *
 *  Created by Andrew Rambaut on 20/03/2009.
 *  Copyright 2009 __MyCompanyName__. All rights reserved.
 *
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <libhmsbeagle/BeagleImpl.h>

//#define JC

#ifdef _WIN32
#include <vector>
#endif

#include "libhmsbeagle/beagle.h"

char *D4Brazi82 = (char*) "AACCCCCCGGGGGTTTTTTTT";
char *D4ElSal83 = (char*) "AACCCCTTGGGGGCTTTTTTT";
char *D4ElSal94 = (char*) "AACCGTCTAGGGGCCCTTTTT";
char *D4Indon76 = (char*) "AGCTCCCTGAGGGCCTACCTT";
char *D4Indon77 = (char*) "AACTCCCTGAACGCCTACTCT";


int* getStates(char *sequence) {
    int n = strlen(sequence);
    int *states = (int*) malloc(sizeof(int) * n);

    for (int i = 0; i < n; i++) {
        switch (sequence[i]) {
            case 'A':
                states[i] = 0;
                break;
            case 'C':
                states[i] = 1;
                break;
            case 'G':
                states[i] = 2;
                break;
            case 'T':
                states[i] = 3;
                break;
            default:
                states[i] = 4;
                break;
        }
    }
    return states;
}

double* getPartials(char *sequence) {
    int n = strlen(sequence);
    double *partials = (double*)malloc(sizeof(double) * n * 4);

    int k = 0;
    for (int i = 0; i < n; i++) {
        switch (sequence[i]) {
            case 'A':
                partials[k++] = 1;
                partials[k++] = 0;
                partials[k++] = 0;
                partials[k++] = 0;
                break;
            case 'C':
                partials[k++] = 0;
                partials[k++] = 1;
                partials[k++] = 0;
                partials[k++] = 0;
                break;
            case 'G':
                partials[k++] = 0;
                partials[k++] = 0;
                partials[k++] = 1;
                partials[k++] = 0;
                break;
            case 'T':
                partials[k++] = 0;
                partials[k++] = 0;
                partials[k++] = 0;
                partials[k++] = 1;
                break;
            default:
                partials[k++] = 1;
                partials[k++] = 1;
                partials[k++] = 1;
                partials[k++] = 1;
                break;
        }
    }
    return partials;
}

int main( int argc, const char* argv[] )
{

//    bool scaling = true; disable scaling for now
    bool scaling = false;

    bool doJC = true;

    // is nucleotides...
    int stateCount = 4;

    // get the number of site patterns
    int nPatterns = strlen(D4Brazi82);

    // change # rate category to 2
//    int rateCategoryCount = 4;
    int rateCategoryCount = 2;
//    int rateCategoryCount = 1;

    int scaleCount = (scaling ? 4 : 0);

    BeagleInstanceDetails instDetails;

    /// Doubled the size of partials buffer from 5 to 10

    // create an instance of the BEAGLE library
    int instance = beagleCreateInstance(
            5,				/**< Number of tip data elements (input) */
            30,	            /**< Number of partials buffers to create (input) */
            0,		        /**< Number of compact state representation buffers to create (input) */
            stateCount,		/**< Number of states in the continuous-time Markov chain (input) */
            nPatterns,		/**< Number of site patterns to be handled by the instance (input) */
            1,		        /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
            10,		        /**< Number of rate matrix buffers (input) */
            rateCategoryCount,/**< Number of rate categories (input) */
            10,       /**< Number of scaling buffers */
            NULL,			    /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
            0,			    /**< Length of resourceList list (input) */
            BEAGLE_FLAG_PROCESSOR_CPU,             	/**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
            BEAGLE_FLAG_EIGEN_REAL,                 /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
            &instDetails);
    if (instance < 0) {
        fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
        exit(1);
    }


    int rNumber = instDetails.resourceNumber;
    fprintf(stdout, "Using resource %i:\n", rNumber);
    fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
    fprintf(stdout, "\tImpl Name : %s\n", instDetails.implName);
    fprintf(stdout, "\tImpl Desc : %s\n", instDetails.implDescription);
    fprintf(stdout, "\n");


//    beagleSetTipStates(instance, 0, getStates(human));
//    beagleSetTipStates(instance, 1, getStates(chimp));
//    beagleSetTipStates(instance, 2, getStates(gorilla));

    // set the sequences for each tip using partial likelihood arrays
    double *D4Brazi82Partials   = getPartials(D4Brazi82);
    double *D4ElSal83Partials   = getPartials(D4ElSal83);
    double *D4ElSal94Partials   = getPartials(D4ElSal94);
    double *D4Indon76Partials   = getPartials(D4Indon76);
    double *D4Indon77Partials   = getPartials(D4Indon77);

    beagleSetTipPartials(instance, 0, D4ElSal94Partials);
    beagleSetTipPartials(instance, 1, D4Indon76Partials);
    beagleSetTipPartials(instance, 2, D4Brazi82Partials);
    beagleSetTipPartials(instance, 3, D4ElSal83Partials);
    beagleSetTipPartials(instance, 4, D4Indon77Partials);

#ifdef _WIN32
    std::vector<double> rates(rateCategoryCount);
#else
    double rates[rateCategoryCount];
#endif
    rates[0] = 0.14251623900062188;
    rates[1] = 1.85748376099937812;
//    rates[0] = 1.0;
//    for (int i = 0; i < rateCategoryCount; i++) {
////        rates[i] = 1.0;
//        rates[i] = 3.0 * (i + 1) / (2 * rateCategoryCount + 1);
//    }

    beagleSetCategoryRates(instance, &rates[0]);

    double patternWeights[21] = {454,2,267,3,1,4,1,1,3,3,1,1,397,1,1,6,1,2,4,2,330};

//    for (int i = 0; i < nPatterns; i++) {
//        patternWeights[i] = 1.0;
//    }

    beagleSetPatternWeights(instance, patternWeights);

    // create base frequency array
    double freqs[4] = { 0.1, 0.3, 0.2, 0.4 };
//    double freqs[4] = { 0.25, 0.25, 0.25, 0.25 };

    beagleSetStateFrequencies(instance, 0, freqs);

    // create an array containing site category weights
#ifdef _WIN32
    std::vector<double> weights(rateCategoryCount);
#else
    double weights[rateCategoryCount];
#endif
    for (int i = 0; i < rateCategoryCount; i++) {
        weights[i] = 1.0/rateCategoryCount;
//        weights[i] = 2.0 * double(i + 1)/ double(rateCategoryCount * (rateCategoryCount + 1));
    }

    beagleSetCategoryWeights(instance, 0, &weights[0]);

//#ifndef JC
//	// an eigen decomposition for the 4-state 1-step circulant infinitesimal generator
//	double evec[4 * 4] = {
//			 -0.5,  0.6906786606674509,   0.15153543380548623, 0.5,
//			  0.5, -0.15153543380548576,  0.6906786606674498,  0.5,
//			 -0.5, -0.6906786606674498,  -0.15153543380548617, 0.5,
//			  0.5,  0.15153543380548554, -0.6906786606674503,  0.5
//	};
//
//	double ivec[4 * 4] = {
//			 -0.5,  0.5, -0.5,  0.5,
//			  0.6906786606674505, -0.15153543380548617, -0.6906786606674507,   0.15153543380548645,
//			  0.15153543380548568, 0.6906786606674509,  -0.15153543380548584, -0.6906786606674509,
//			  0.5,  0.5,  0.5,  0.5
//	};
//
//	double eval[8] = { -2.0, -1.0, -1.0, 0, 0, 1, -1, 0 };
//#else
//	// an eigen decomposition for the JC69 model
//	double evec[4 * 4] = {
//        1.0,  2.0,  0.0,  0.5,
//        1.0,  -2.0,  0.5,  0.0,
//        1.0,  2.0, 0.0,  -0.5,
//        1.0,  -2.0,  -0.5,  0.0
//	};
//
//	double ivec[4 * 4] = {
//        0.25,  0.25,  0.25,  0.25,
//        0.125,  -0.125,  0.125,  -0.125,
//        0.0,  1.0,  0.0,  -1.0,
//        1.0,  0.0,  -1.0,  0.0
//	};
//
//	double eval[8] = { 0.0, -1.3333333333333333, -1.3333333333333333, -1.3333333333333333,
//			0.0, 0.0, 0.0, 0.0 };
//#endif

    ///eigen decomposition of the HKY85 model
    double evec[4 * 4] = {
            0.9819805,  0.040022305,  0.04454354,  -0.5,
            -0.1091089, -0.002488732, 0.81606029,  -0.5,
            -0.1091089, -0.896939683, -0.11849713, -0.5,
            -0.1091089,  0.440330814, -0.56393254, -0.5
    };

    double ivec[4 * 4] = {
            0.9165151, -0.3533241, -0.1573578, -0.4058332,
            0.0,  0.2702596, -0.8372848,  0.5670252,
            0.0,  0.8113638, -0.2686725, -0.5426913,
            -0.2, -0.6, -0.4, -0.8
    };

    ///array of real parts + array of imaginary parts
    double eval[8] = { -1.42857105618099456, -1.42857095607719153, -1.42857087221423851, 0.0,
                       0.0, 0.0, 0.0, 0.0 };

    ///Q^T matrix
    double QT[4 * 4] = {
            -1.2857138,  0.1428570,  0.1428570,  0.1428570,
            0.4285712, -0.9999997,  0.4285714,  0.4285713,
            0.2857142,  0.2857143, -1.1428568,  0.2857142,
            0.5714284,  0.5714284,  0.5714284, -0.8571426
    };
    double Q[4 * 4 * 2] = {
            -1.285714,  0.4285712,  0.2857142,  0.5714284,
            0.142857, -0.9999997,  0.2857143,  0.5714284,
            0.142857,  0.4285714, -1.1428568,  0.5714284,
            0.142857,  0.4285713,  0.2857142, -0.8571426,
            -1.285714,  0.4285712,  0.2857142,  0.5714284,
            0.142857, -0.9999997,  0.2857143,  0.5714284,
            0.142857,  0.4285714, -1.1428568,  0.5714284,
            0.142857,  0.4285713,  0.2857142, -0.8571426
    };

    double Q2[4 * 4 * 2] = {
            1.8367333, -0.6122443, -0.4081629, -0.8163261,
            -0.2040814,  1.4285705, -0.4081632, -0.8163259,
            -0.2040814, -0.6122447,  1.6326522, -0.8163261,
            -0.2040814, -0.6122446, -0.4081630,  1.2244890,
            1.8367333, -0.6122443, -0.4081629, -0.8163261,
            -0.2040814,  1.4285705, -0.4081632, -0.8163259,
            -0.2040814, -0.6122447,  1.6326522, -0.8163261,
            -0.2040814, -0.6122446, -0.4081630,  1.2244890
    };
    double *scaledQ = (double*) malloc(sizeof(double) * stateCount * stateCount * rateCategoryCount);
    double *scaledQ2 = (double*) malloc(sizeof(double) * stateCount * stateCount * rateCategoryCount);

    for (int rate = 0; rate < rateCategoryCount; ++rate) {
        for (int entry = 0; entry < stateCount * stateCount; ++entry) {
            scaledQ[entry + rate * stateCount * stateCount] = Q[entry + rate * stateCount * stateCount] * rates[rate];
            scaledQ2[entry + rate * stateCount * stateCount] = Q2[entry + rate * stateCount * stateCount] * rates[rate] * rates[rate];
        }
    }

    beagleSetTransitionMatrix(instance, 8, scaledQ, 0.0);
    beagleSetTransitionMatrix(instance, 9, scaledQ2, 0.0);

    // set the Eigen decomposition
    beagleSetEigenDecomposition(instance, 0, evec, ivec, eval);

    // a list of indices and edge lengths
    int nodeIndices[8] = { 0, 1, 2, 3, 4, 5, 6, 7};
    double edgeLengths[8] = { 25.81403421468474, 7.814034214684739, 36.80326223293307, 37.80326223293307,
                              282.8618556834007, 244.56614874230695, 221.57692072405862, 29.481672726408988};
//    double edgeLengths[8] = { 0.81403421468474, 0.814034214684739, 0.80326223293307, 0.80326223293307,
//                              0.8618556834007, 0.56614874230695, 0.57692072405862, 0.481672726408988};

    // tell BEAGLE to populate the transition matrices for the above edge lengths
    beagleUpdateTransitionMatrices(instance,     // instance
                                   0,             // eigenIndex
                                   nodeIndices,   // probabilityIndices
                                   NULL,          // firstDerivativeIndices
                                   NULL,          // secondDervativeIndices
                                   edgeLengths,   // edgeLengths
                                   8);            // count

    // create a list of partial likelihood update operations
    // the order is [dest, destScaling, source1, matrix1, source2, matrix2]
    BeagleOperation operations[8] = {
             9, (scaling ? 0 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 0, 0, 1, 1,
            10, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 2, 2, 3, 3,
            11, (scaling ? 2 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 9, 5, 10, 6,
            12, (scaling ? 3 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 11, 7, 4, 4,
             5, (scaling ? 0 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 0, 0, 1, 1,
             6, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 2, 2, 3, 3,
             7, (scaling ? 2 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 5, 5, 6, 6,
             8, (scaling ? 3 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 7, 7, 4, 4
    };

    int rootIndex = 12;

    // update the partials
    beagleUpdatePartials(instance,      // instance
                         operations,     // operations
                         8,              // operationCount
                         BEAGLE_OP_NONE);          // cumulative scaling index

    int categoryWeightsIndex = 0;
    int stateFrequencyIndex = 0;
    // create a list of partial likelihood update operations
    // the order is [dest, destScaling, source1, matrix1, source2, matrix2]
    // destPartials point to the pre-order partials
    // partials1 = pre-order partials of the parent node
    // matrices1 = Ptr matrices of the current node (to the parent node)
    // partials2 = post-order partials of the sibling node
    // matrices2 = Ptr matrices of the sibling node (to the parent node)
    BeagleOperation pre_order_operations[8] = {
            29, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 13, 7, 4, 4,
            27, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 29, 5, 10, 6,
            22, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 27, 0, 1, 1,
            23, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 27, 1, 0, 0,
            28, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 29, 6, 9, 5,
            24, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 28, 2, 3, 3,
            25, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 28, 3, 2, 2,
            26, (scaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 13, 4, 11, 7
    };

    int rootPreIndex = 13;

    beagleSetRootPrePartials(instance,
                             (const int *) &rootPreIndex,               // bufferIndices
                             &stateFrequencyIndex,                  // stateFrequencies
                             1);                                    // count

    // update the pre-order partials
    beagleUpdatePrePartials(instance,
                            pre_order_operations,
                            8,
                            BEAGLE_OP_NONE);

//  print pre-order partials and edge length log-likelihood gradient to screen
//  TODO: implement gradient calculation according to beagleCalculateEdgeLogLikelihoods() in beagle.cpp
//  need to consider rate variation case


    double * seeprePartials = (double*) malloc(sizeof(double) * stateCount * nPatterns * rateCategoryCount);
    double * seepreParentPartials = (double*) malloc(sizeof(double) * stateCount * nPatterns * rateCategoryCount);
    double * seepostPartials = (double*) malloc(sizeof(double) * stateCount * nPatterns *rateCategoryCount);
    double * seerootPartials = (double*) malloc(sizeof(double) * stateCount * nPatterns * rateCategoryCount);
    double * seePtrSelf = (double*) malloc(sizeof(double) * stateCount * stateCount * rateCategoryCount);
    double * seePtrSibling = (double*) malloc(sizeof(double) * stateCount * stateCount * rateCategoryCount);

    double * tmpNumerator = (double*)   malloc(sizeof(double)  * nPatterns * rateCategoryCount);

    double * grand_denominator = (double*) malloc(sizeof(double)  * nPatterns);
    double * grand_numerator = (double*) malloc(sizeof(double)  * nPatterns);
    /// state frequencies stored in freqs
    /// category weights stored in weights


    beagleGetPartials(instance, rootIndex, BEAGLE_OP_NONE, seerootPartials);
    for(int i = 0; i < 8; i++){
        for(int m = 0; m < nPatterns; m++){
            grand_denominator[m] = 0;
            grand_numerator[m] = 0;
        }
        int postBufferIndices = i > 4 ? i + 4 : i;
        int preBufferIndices = i == 8 ? 13 : i + 22;
        beagleGetPartials(instance, preBufferIndices, BEAGLE_OP_NONE, seeprePartials);
        beagleGetPartials(instance, 13, BEAGLE_OP_NONE, seepreParentPartials);
        beagleGetPartials(instance, postBufferIndices, BEAGLE_OP_NONE, seepostPartials);

        beagleGetTransitionMatrix(instance, i, seePtrSelf);
        beagleGetTransitionMatrix(instance, 4, seePtrSibling);

        double * prePartialsPtr = seeprePartials;
        double * postPartialsPtr = seepostPartials;

        double denominator = 0;
        double numerator = 0;

        double tmp = 0;
        int k, j, l, m, s, t;
        std::cout<<"Gradient for branch (of node) "<< i <<": \n";

        ///get likelihood for each rate category first
        double clikelihood[rateCategoryCount * nPatterns];
        l = 0; j = 0;
        for(s = 0; s < rateCategoryCount; s++){
            for(m = 0; m < nPatterns; m++){
                double clikelihood_tmp = 0.0;
                for(k=0; k < stateCount; k++){
                    clikelihood_tmp += freqs[k] * seerootPartials[l++];
                }
                clikelihood[j++] = clikelihood_tmp;
            }
        }

        ///now calculate weights
        t = 0;
        for(s = 0; s < rateCategoryCount; s++){
            double ws = weights[s];
            double rs = rates[s];
            for(m=0; m < nPatterns; m++){
                l = 0;
                numerator = 0;
                denominator = 0;
                for(k = 0; k < stateCount; k++){
                    tmp = 0.0;
                    for(j=0; j < stateCount; j++){
                        tmp += QT[l++]*prePartialsPtr[j];
                    }
                    numerator += tmp * postPartialsPtr[k];
                    denominator += postPartialsPtr[k] * prePartialsPtr[k];
                }
                postPartialsPtr += stateCount;
                prePartialsPtr  += stateCount;
                tmpNumerator[t] = ws * rs * numerator / denominator * clikelihood[t];
                //std::cout<< tmpNumerator[t]<<",  "<<ws*clikelihood[t]<<"  \n";
                grand_numerator[m] += tmpNumerator[t];
                grand_denominator[m] += ws * clikelihood[t];
//                std::cout<< denominator<<",  "<<ws*clikelihood[t]<<",  "<<clikelihood[t]<<"  \n";
                t++;
            }
//            std::cout<<std::endl;
        }

        double gradient = 0.0;
        for(m=0; m < nPatterns; m++){
            gradient += grand_numerator[m] / grand_denominator[m] * patternWeights[m];
            std::cout<<grand_numerator[m] / grand_denominator[m]<< "  ";
        }

        std::cout<< std::endl <<gradient * edgeLengths[i]<<std::endl;
    }

    double *patternLogLik = (double*)malloc(sizeof(double) * nPatterns);

    int cumulativeScalingIndex = (scaling ? 2 : BEAGLE_OP_NONE);

    if (scaling) {
        int scalingFactorsCount = 2;
        int scalingFactorsIndices[2] = {0, 1};

        beagleResetScaleFactors(instance,
                                cumulativeScalingIndex);

        beagleAccumulateScaleFactors(instance,
                                     scalingFactorsIndices,
                                     scalingFactorsCount,
                                     cumulativeScalingIndex);
    }




    double logL = 0.0;

    // calculate the site likelihoods at the root node
    beagleCalculateRootLogLikelihoods(instance,               // instance
                                      (const int *)&rootIndex,// bufferIndices
                                      &categoryWeightsIndex,                // weights
                                      &stateFrequencyIndex,                  // stateFrequencies
                                      &cumulativeScalingIndex,// cumulative scaling index
                                      1,                      // count
                                      &logL);         // outLogLikelihoods

    int postBufferIndices[8] = {0, 1, 2, 3, 9, 10, 11, 12};
    int preBufferIndices[8] = {22, 23, 24, 25, 26, 27, 28, 29};
    int firstDervIndices[8] = {8, 8, 8, 8, 8, 8, 8, 8};
    int secondDervIndices[8] = {9, 9, 9, 9, 9, 9, 9, 9};
    int categoryRatesIndex = categoryWeightsIndex;
    double* gradient = (double*) malloc(sizeof(double) * nPatterns * 8);
    double* diagonalHessian = (double*) malloc(sizeof(double) * nPatterns * 8);

    beagleSetTransitionMatrix(instance, 8, scaledQ, 0.0);
    beagleSetTransitionMatrix(instance, 9, scaledQ2, 0.0);

    beagleCalculateEdgeDerivative(instance, postBufferIndices, preBufferIndices,
                                  rootIndex, firstDervIndices, secondDervIndices,
                                  categoryWeightsIndex, categoryRatesIndex,
                                  stateFrequencyIndex, &cumulativeScalingIndex,
                                  8, gradient, NULL);

    std::cout<<"Gradient: \n";
    for (int i = 0; i < 8; i++) {
        double sum = 0;
        for (int m = 0; m < nPatterns; m++) {
            std::cout<<gradient[i * nPatterns + m]<<"  ";
            sum += gradient[i * nPatterns + m] * patternWeights[m];
        }
        std::cout<<std::endl<<sum * edgeLengths[i]<<std::endl;
    }

#ifndef JC
    fprintf(stdout, "logL = %.5f (R = -11773.29178724702)\n\n", logL);
#else
    fprintf(stdout, "logL = %.5f (PAUP = -1574.63624)\n\n", logL);
#endif

//    free(patternWeights);

    free(patternLogLik);
    free(D4Brazi82Partials);
    free(D4ElSal83Partials);
    free(D4ElSal94Partials);
    free(D4Indon76Partials);
    free(D4Indon77Partials);

    beagleFinalizeInstance(instance);

#ifdef _WIN32
    std::cout << "\nPress ENTER to exit...\n";
    fflush( stdout);
    fflush( stderr);
    getchar();
#endif

}