1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
/*
* oddstatetest.cpp
*
* @author Marc A. Suchard
* @author Aaron Darling
*/
#include <cstdio>
#include <string>
#include <cstdlib>
#include <iostream>
#ifdef _WIN32
#include <vector>
#include <winsock.h>
#else
#include <sys/time.h>
#endif
#include "libhmsbeagle/beagle.h"
#ifdef _WIN32
//From January 1, 1601 (UTC). to January 1,1970
#define FACTOR 0x19db1ded53e8000
int gettimeofday(struct timeval *tp,void * tz) {
FILETIME f;
ULARGE_INTEGER ifreq;
LONGLONG res;
GetSystemTimeAsFileTime(&f);
ifreq.HighPart = f.dwHighDateTime;
ifreq.LowPart = f.dwLowDateTime;
res = ifreq.QuadPart - FACTOR;
tp->tv_sec = (long)((LONGLONG)res/10000000);
tp->tv_usec = (long)((LONGLONG)res% 10000000000); // Micro Seonds
return 0;
}
#endif
double* getRandomTipPartials( int nsites, int stateCount )
{
double *partials = (double*) calloc(sizeof(double), nsites * stateCount); // 'malloc' was a bug
for( int i=0; i<nsites*stateCount; i+=stateCount )
{
int s = rand()%stateCount;
partials[i+s]=1.0;
}
return partials;
}
void runBeagle(int resource,
int stateCount,
int ntaxa,
int nsites,
bool scaling,
bool autoScaling,
int rateCategoryCount)
{
int scaleCount = (scaling ? ntaxa : 0);
BeagleInstanceDetails instDetails;
// create an instance of the BEAGLE library
int instance = beagleCreateInstance(
ntaxa, /**< Number of tip data elements (input) */
2*ntaxa-1, /**< Number of partials buffers to create (input) */
0, /**< Number of compact state representation buffers to create (input) */
stateCount, /**< Number of states in the continuous-time Markov chain (input) */
nsites, /**< Number of site patterns to be handled by the instance (input) */
1, /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
2*ntaxa-2, /**< Number of rate matrix buffers (input) */
rateCategoryCount,/**< Number of rate categories */
scaleCount, /**< scaling buffers */
&resource, /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
1, /**< Length of resourceList list (input) */
// (autoScaling ? BEAGLE_FLAG_SCALING_AUTO : 0), /**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
BEAGLE_FLAG_VECTOR_SSE,
0, /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
&instDetails);
if (instance < 0) {
fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
exit(1);
}
int rNumber = instDetails.resourceNumber;
fprintf(stdout, "Using resource %i:\n", rNumber);
fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
fprintf(stdout, "\tImpl Name : %s\n", instDetails.implName);
fprintf(stdout, "\n");
if (!(instDetails.flags & BEAGLE_FLAG_SCALING_AUTO))
autoScaling = false;
// set the sequences for each tip using partial likelihood arrays
srand(42); // fix the random seed...
for(int i=0; i<ntaxa; i++)
{
double* tmpPartials = getRandomTipPartials(nsites, stateCount);
beagleSetTipPartials(instance, i, tmpPartials);
free(tmpPartials);
}
#ifdef _WIN32
std::vector<double> rates(rateCategoryCount);
#else
double rates[rateCategoryCount];
#endif
for (int i = 0; i < rateCategoryCount; i++) {
rates[i] = 1.0;
}
beagleSetCategoryRates(instance, &rates[0]);
double* patternWeights = (double*) malloc(sizeof(double) * nsites);
for (int i = 0; i < nsites; i++) {
patternWeights[i] = 1.0;
}
beagleSetPatternWeights(instance, patternWeights);
free(patternWeights);
// create base frequency array
#ifdef _WIN32
std::vector<double> freqs(stateCount);
#else
double freqs[stateCount];
#endif
for (int i=0; i<stateCount; i++) {
freqs[i] = 1.0 / stateCount;
}
beagleSetStateFrequencies(instance, 0, &freqs[0]);
// create an array containing site category weights
#ifdef _WIN32
std::vector<double> weights(rateCategoryCount);
#else
double weights[rateCategoryCount];
#endif
for (int i = 0; i < rateCategoryCount; i++) {
weights[i] = 1.0/rateCategoryCount;
}
beagleSetCategoryWeights(instance, 0, &weights[0]);
// an eigen decomposition for the general state-space JC69 model
double evec[5 * 5] = {
-1, 0.000000, 2.0, 0.000000, 0.0000000,
-1, 0.830091, -0.5, 0.000000, 1.7495568,
-1, 1.372801, -0.5, 0.000000, -1.3658029,
-1, -1.101446, -0.5, -1.581139, -0.1918769,
-1, -1.101446, -0.5, 1.581139, -0.1918769
};
double ivec[5 * 5] = {
-0.2, -0.2, -0.2, -0.2, -0.2,
0.0, 1.660182e-01, 2.745602e-01, -0.22028920, -0.22028920,
0.4, -1.000000e-01, -1.000000e-01, -0.10000000, -0.10000000,
0.0, 0.0, 0.0, -0.31622777, 0.31622777,
0.0, 3.499114e-01, -2.731606e-01, -0.03837538, -0.03837538
};
// double* Hn = (double*)malloc(sizeof(double)*stateCount*stateCount);
// Hn[0*stateCount+0] = 1.0; Hn[0*stateCount+1] = 1.0;
// Hn[1*stateCount+0] = 1.0; Hn[1*stateCount+1] = -1.0; // H_1
//
// for (int k=2; k < stateCount; k <<= 1) {
// // H_n = H_1 (Kronecker product) H_{n-1}
// for (int i=0; i<k; i++) {
// for (int j=i; j<k; j++) {
// double Hijold = Hn[i*stateCount + j];
// Hn[i *stateCount + j + k] = Hijold;
// Hn[(i+k)*stateCount + j ] = Hijold;
// Hn[(i+k)*stateCount + j + k] = -Hijold;
//
// Hn[j *stateCount + i + k] = Hn[i *stateCount + j + k];
// Hn[(j+k)*stateCount + i ] = Hn[(i+k)*stateCount + j ];
// Hn[(j+k)*stateCount + i + k] = Hn[(i+k)*stateCount + j + k];
// }
// }
// }
// double* evec = Hn;
// Since evec is Hadamard, ivec = (evec)^t / stateCount;
//#ifdef _WIN32
// std::vector<double> ivec(stateCount * stateCount);
//#else
// double ivec[stateCount * stateCount];
//#endif
// for (int i=0; i<stateCount; i++) {
// for (int j=i; j<stateCount; j++) {
// ivec[i*stateCount+j] = evec[j*stateCount+i] / stateCount;
// ivec[j*stateCount+i] = ivec[i*stateCount+j]; // Symmetric
// }
// }
#ifdef _WIN32
std::vector<double> eval(stateCount);
#else
double eval[stateCount];
#endif
eval[0] = 0.0;
for (int i=1; i<stateCount; i++) {
eval[i] = -stateCount / (stateCount - 1.0);
}
// set the Eigen decomposition
beagleSetEigenDecomposition(instance, 0, &evec[0], &ivec[0], &eval[0]);
// a list of indices and edge lengths
int* nodeIndices = new int[ntaxa*2-2];
for(int i=0; i<ntaxa*2-2; i++) nodeIndices[i]=i;
double* edgeLengths = new double[ntaxa*2-2];
for(int i=0; i<ntaxa*2-2; i++) edgeLengths[i]=0.1;
// create a list of partial likelihood update operations
// the order is [dest, destScaling, source1, matrix1, source2, matrix2]
int* operations = new int[(ntaxa-1)*BEAGLE_OP_COUNT];
int* scalingFactorsIndices = new int[(ntaxa-1)]; // internal nodes
for(int i=0; i<ntaxa-1; i++){
operations[BEAGLE_OP_COUNT*i+0] = ntaxa+i;
operations[BEAGLE_OP_COUNT*i+1] = (scaling ? i : BEAGLE_OP_NONE);
operations[BEAGLE_OP_COUNT*i+2] = BEAGLE_OP_NONE;
operations[BEAGLE_OP_COUNT*i+3] = i*2;
operations[BEAGLE_OP_COUNT*i+4] = i*2;
operations[BEAGLE_OP_COUNT*i+5] = i*2+1;
operations[BEAGLE_OP_COUNT*i+6] = i*2+1;
scalingFactorsIndices[i] = i;
if (autoScaling)
scalingFactorsIndices[i] += ntaxa;
}
int rootIndex = ntaxa*2-2;
// start timing!
struct timeval time1, time2, time3;
gettimeofday(&time1,NULL);
// tell BEAGLE to populate the transition matrices for the above edge lengths
beagleUpdateTransitionMatrices(instance, // instance
0, // eigenIndex
nodeIndices, // probabilityIndices
NULL, // firstDerivativeIndices
NULL, // secondDerivativeIndices
edgeLengths, // edgeLengths
ntaxa*2-2); // count
gettimeofday(&time2, NULL);
// update the partials
beagleUpdatePartials( instance, // instance
(BeagleOperation*)operations, // eigenIndex
ntaxa-1, // operationCount
BEAGLE_OP_NONE); // cumulative scaling index
int scalingFactorsCount = ntaxa-1;
int cumulativeScalingFactorIndex = (scaling ? ntaxa-1 : BEAGLE_OP_NONE);
if (scaling && !autoScaling) {
beagleResetScaleFactors(instance,
cumulativeScalingFactorIndex);
beagleAccumulateScaleFactors(instance,
scalingFactorsIndices,
scalingFactorsCount,
cumulativeScalingFactorIndex);
}
if (autoScaling)
beagleAccumulateScaleFactors(instance, scalingFactorsIndices, scalingFactorsCount, BEAGLE_OP_NONE);
int categoryWeightsIndex = 0;
int stateFrequencyIndex = 0;
double logL = 0.0;
// calculate the site likelihoods at the root node
beagleCalculateRootLogLikelihoods(instance, // instance
(const int *)&rootIndex,// bufferIndices
&categoryWeightsIndex, // weights
&stateFrequencyIndex, // stateFrequencies
&cumulativeScalingFactorIndex,
1, // count
&logL); // outLogLikelihoods
// end timing!
gettimeofday(&time3,NULL);
fprintf(stdout, "logL = %.5f \n", logL);
double timediff1 = time2.tv_sec - time1.tv_sec + (double)(time2.tv_usec-time1.tv_usec)/1000000.0;
double timediff2 = time3.tv_sec - time2.tv_sec + (double)(time3.tv_usec-time2.tv_usec)/1000000.0;
std::cout << "Took " << timediff1 << " and\n";
std::cout << " " << timediff2 << " seconds\n\n";
beagleFinalizeInstance(instance);
// free(evec);
}
void abort(std::string msg) {
std::cerr << msg << "\nAborting..." << std::endl;
std::exit(1);
}
void helpMessage() {
std::cerr << "Usage:\n\n";
std::cerr << "oddstatetest [--help] [--states <integer>] [--taxa <integer>] [--sites <integer>] [--rates <integer>] [--scale]\n\n";
std::cerr << "If --help is specified, this usage message is shown\n\n";
std::cerr << "If --scale is specified, BEAGLE will rescale the partials during computation\n\n";
std::exit(0);
}
void interpretCommandLineParameters(int argc, const char* argv[],
int* stateCount,
int* ntaxa,
int* nsites,
bool* scaling,
bool* autoScaling,
int* rateCategoryCount) {
bool expecting_stateCount = false;
bool expecting_ntaxa = false;
bool expecting_nsites = false;
bool expecting_rateCategoryCount = false;
for (unsigned i = 1; i < argc; ++i) {
std::string option = argv[i];
if (expecting_stateCount) {
*stateCount = (unsigned)atoi(option.c_str());
expecting_stateCount = false;
} else if (expecting_ntaxa) {
*ntaxa = (unsigned)atoi(option.c_str());
expecting_ntaxa = false;
} else if (expecting_nsites) {
*nsites = (unsigned)atoi(option.c_str());
expecting_nsites = false;
} else if (expecting_rateCategoryCount) {
*rateCategoryCount = (unsigned)atoi(option.c_str());
expecting_rateCategoryCount = false;
} else if (option == "--help") {
helpMessage();
} else if (option == "--scale") {
*scaling = true;
} else if (option == "--autoscale") {
*scaling = true;
*autoScaling = true;
} else if (option == "--states") {
expecting_stateCount = true;
} else if (option == "--taxa") {
expecting_ntaxa = true;
} else if (option == "--sites") {
expecting_nsites = true;
} else if (option == "--rates") {
expecting_rateCategoryCount = true;
} else {
std::string msg("Unknown command line parameter \"");
msg.append(option);
abort(msg.c_str());
}
}
if (expecting_stateCount)
abort("read last command line option without finding value associated with --states");
if (expecting_ntaxa)
abort("read last command line option without finding value associated with --taxa");
if (expecting_nsites)
abort("read last command line option without finding value associated with --sites");
if (expecting_rateCategoryCount)
abort("read last command line option without finding value associated with --rates");
if (*stateCount != 5)
abort("invalid number of states (must be 5 currently) supplied on the command line");
if (*ntaxa < 2)
abort("invalid number of taxa supplied on the command line");
if (*nsites < 1)
abort("invalid number of sites supplied on the command line");
if (*rateCategoryCount < 1) {
abort("invalid number of rates supplied on the command line");
}
}
int main( int argc, const char* argv[] )
{
// Default values
int stateCount = 5;
int ntaxa = 29;
int nsites = 10000;
bool manualScaling = false;
bool autoScaling = false;
int rateCategoryCount = 4;
interpretCommandLineParameters(argc, argv, &stateCount, &ntaxa, &nsites, &manualScaling, &autoScaling, &rateCategoryCount);
std::cout << "Simulating genomic ";
if (stateCount == 4)
std::cout << "DNA";
else
std::cout << stateCount << "-state data";
std::cout << " with " << ntaxa << " taxa and " << nsites << " site patterns\n";
BeagleResourceList* rl = beagleGetResourceList();
// if(rl != NULL){
// for(int i=0; i<rl->length; i++){
// runBeagle(i,
// stateCount,
// ntaxa,
// nsites,
// manualScaling,
// autoScaling,
// rateCategoryCount);
// }
// }else{
runBeagle(NULL,
stateCount,
ntaxa,
nsites,
manualScaling,
autoScaling,
rateCategoryCount);
// }
#ifdef _WIN32
std::cout << "\nPress ENTER to exit...\n";
fflush( stdout);
fflush( stderr);
getchar();
#endif
}
|