File: tinytest.cpp

package info (click to toggle)
libhmsbeagle 4.0.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 46,436 kB
  • sloc: xml: 133,356; cpp: 36,477; ansic: 5,842; java: 2,400; python: 643; sh: 338; makefile: 50
file content (360 lines) | stat: -rw-r--r-- 15,297 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
/*
 *  tinyTest.cpp
 *  BEAGLE
 *
 *  Created by Andrew Rambaut on 20/03/2009.
 *
 */
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>

#ifdef _WIN32
	#include <vector>
#endif

#include "libhmsbeagle/beagle.h"

char *human = (char*)"AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGGAGCTTAAACCCCCTTATTTCTACTAGGACTATGAGAATCGAACCCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTATACCCTTCCCGTACTAAGAAATTTAGGTTAAATACAGACCAAGAGCCTTCAAAGCCCTCAGTAAGTTG-CAATACTTAATTTCTGTAAGGACTGCAAAACCCCACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGACCAATGGGACTTAAACCCACAAACACTTAGTTAACAGCTAAGCACCCTAATCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAA-TCACCTCGGAGCTTGGTAAAAAGAGGCCTAACCCCTGTCTTTAGATTTACAGTCCAATGCTTCA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAACCCCATGGCCTCCATGACTTTTTCAAAAGGTATTAGAAAAACCATTTCATAACTTTGTCAAAGTTAAATTATAGGCT-AAATCCTATATATCTTA-CACTGTAAAGCTAACTTAGCATTAACCTTTTAAGTTAAAGATTAAGAGAACCAACACCTCTTTACAGTGA";
char *chimp = (char*)"AGAAATATGTCTGATAAAAGAATTACTTTGATAGAGTAAATAATAGGAGTTCAAATCCCCTTATTTCTACTAGGACTATAAGAATCGAACTCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTATCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTTACACCCTTCCCGTACTAAGAAATTTAGGTTAAGCACAGACCAAGAGCCTTCAAAGCCCTCAGCAAGTTA-CAATACTTAATTTCTGTAAGGACTGCAAAACCCCACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATTAATGGGACTTAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAATCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAA-TCACCTCAGAGCTTGGTAAAAAGAGGCTTAACCCCTGTCTTTAGATTTACAGTCCAATGCTTCA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCTAAAGCTGGTTTCAAGCCAACCCCATGACCTCCATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAAGTTAAATTACAGGTT-AACCCCCGTATATCTTA-CACTGTAAAGCTAACCTAGCATTAACCTTTTAAGTTAAAGATTAAGAGGACCGACACCTCTTTACAGTGA";
char *gorilla = (char*)"AGAAATATGTCTGATAAAAGAGTTACTTTGATAGAGTAAATAATAGAGGTTTAAACCCCCTTATTTCTACTAGGACTATGAGAATTGAACCCATCCCTGAGAATCCAAAATTCTCCGTGCCACCTGTCACACCCCATCCTAAGTAAGGTCAGCTAAATAAGCTATCGGGCCCATACCCCGAAAATGTTGGTCACATCCTTCCCGTACTAAGAAATTTAGGTTAAACATAGACCAAGAGCCTTCAAAGCCCTTAGTAAGTTA-CAACACTTAATTTCTGTAAGGACTGCAAAACCCTACTCTGCATCAACTGAACGCAAATCAGCCACTTTAATTAAGCTAAGCCCTTCTAGATCAATGGGACTCAAACCCACAAACATTTAGTTAACAGCTAAACACCCTAGTCAAC-TGGCTTCAATCTAAAGCCCCGGCAGG-TTTGAAGCTGCTTCTTCGAATTTGCAATTCAATATGAAAT-TCACCTCGGAGCTTGGTAAAAAGAGGCCCAGCCTCTGTCTTTAGATTTACAGTCCAATGCCTTA-CTCAGCCATTTTACCACAAAAAAGGAAGGAATCGAACCCCCCAAAGCTGGTTTCAAGCCAACCCCATGACCTTCATGACTTTTTCAAAAGATATTAGAAAAACTATTTCATAACTTTGTCAAGGTTAAATTACGGGTT-AAACCCCGTATATCTTA-CACTGTAAAGCTAACCTAGCGTTAACCTTTTAAGTTAAAGATTAAGAGTATCGGCACCTCTTTGCAGTGA";

int* getStates(char *sequence) {
	int n = strlen(sequence);
	int *states = (int*) malloc(sizeof(int) * n);
    
	for (int i = 0; i < n; i++) {
		switch (sequence[i]) {
			case 'A':
				states[i] = 0;
				break;
			case 'C':
				states[i] = 1;
				break;
			case 'G':
				states[i] = 2;
				break;
			case 'T':
				states[i] = 3;
				break;
			default:
				states[i] = 4;
				break;
		}
	}
	return states;
}

double* getPartials(char *sequence) {
	int n = strlen(sequence);
	double *partials = (double*)malloc(sizeof(double) * n * 4);
    
    int k = 0;
	for (int i = 0; i < n; i++) {
		switch (sequence[i]) {
			case 'A':
				partials[k++] = 1;
				partials[k++] = 0;
				partials[k++] = 0;
				partials[k++] = 0;
				break;
			case 'C':
				partials[k++] = 0;
				partials[k++] = 1;
				partials[k++] = 0;
				partials[k++] = 0;
				break;
			case 'G':
				partials[k++] = 0;
				partials[k++] = 0;
				partials[k++] = 1;
				partials[k++] = 0;
				break;
			case 'T':
				partials[k++] = 0;
				partials[k++] = 0;
				partials[k++] = 0;
				partials[k++] = 1;
				break;
			default:
				partials[k++] = 1;
				partials[k++] = 1;
				partials[k++] = 1;
				partials[k++] = 1;
				break;
		}
	}
	return partials;
}

void printFlags(long inFlags) {
    if (inFlags & BEAGLE_FLAG_PROCESSOR_CPU)      fprintf(stdout, " PROCESSOR_CPU");
    if (inFlags & BEAGLE_FLAG_PROCESSOR_GPU)      fprintf(stdout, " PROCESSOR_GPU");
    if (inFlags & BEAGLE_FLAG_PROCESSOR_FPGA)     fprintf(stdout, " PROCESSOR_FPGA");
    if (inFlags & BEAGLE_FLAG_PROCESSOR_CELL)     fprintf(stdout, " PROCESSOR_CELL");
    if (inFlags & BEAGLE_FLAG_PRECISION_DOUBLE)   fprintf(stdout, " PRECISION_DOUBLE");
    if (inFlags & BEAGLE_FLAG_PRECISION_SINGLE)   fprintf(stdout, " PRECISION_SINGLE");
    if (inFlags & BEAGLE_FLAG_COMPUTATION_ASYNCH) fprintf(stdout, " COMPUTATION_ASYNCH");
    if (inFlags & BEAGLE_FLAG_COMPUTATION_SYNCH)  fprintf(stdout, " COMPUTATION_SYNCH");
    if (inFlags & BEAGLE_FLAG_EIGEN_REAL)         fprintf(stdout, " EIGEN_REAL");
    if (inFlags & BEAGLE_FLAG_EIGEN_COMPLEX)      fprintf(stdout, " EIGEN_COMPLEX");
    if (inFlags & BEAGLE_FLAG_SCALING_MANUAL)     fprintf(stdout, " SCALING_MANUAL");
    if (inFlags & BEAGLE_FLAG_SCALING_AUTO)       fprintf(stdout, " SCALING_AUTO");
    if (inFlags & BEAGLE_FLAG_SCALING_ALWAYS)     fprintf(stdout, " SCALING_ALWAYS");
    if (inFlags & BEAGLE_FLAG_SCALING_DYNAMIC)    fprintf(stdout, " SCALING_DYNAMIC");
    if (inFlags & BEAGLE_FLAG_SCALERS_RAW)        fprintf(stdout, " SCALERS_RAW");
    if (inFlags & BEAGLE_FLAG_SCALERS_LOG)        fprintf(stdout, " SCALERS_LOG");
    if (inFlags & BEAGLE_FLAG_VECTOR_NONE)        fprintf(stdout, " VECTOR_NONE");
    if (inFlags & BEAGLE_FLAG_VECTOR_SSE)         fprintf(stdout, " VECTOR_SSE");
    if (inFlags & BEAGLE_FLAG_VECTOR_AVX)         fprintf(stdout, " VECTOR_AVX");
    if (inFlags & BEAGLE_FLAG_THREADING_NONE)     fprintf(stdout, " THREADING_NONE");
    if (inFlags & BEAGLE_FLAG_THREADING_OPENMP)   fprintf(stdout, " THREADING_OPENMP");
    if (inFlags & BEAGLE_FLAG_FRAMEWORK_CPU)      fprintf(stdout, " FRAMEWORK_CPU");
    if (inFlags & BEAGLE_FLAG_FRAMEWORK_CUDA)     fprintf(stdout, " FRAMEWORK_CUDA");
    if (inFlags & BEAGLE_FLAG_FRAMEWORK_OPENCL)   fprintf(stdout, " FRAMEWORK_OPENCL");
}


int main( int argc, const char* argv[] )
{
    // print resource list
    BeagleResourceList* rList;
    rList = beagleGetResourceList();
    fprintf(stdout, "Available resources:\n");
    for (int i = 0; i < rList->length; i++) {
        fprintf(stdout, "\tResource %i:\n\t\tName : %s\n", i, rList->list[i].name);
        fprintf(stdout, "\t\tDesc : %s\n", rList->list[i].description);
        fprintf(stdout, "\t\tFlags:");
        printFlags(rList->list[i].supportFlags);
        fprintf(stdout, "\n");
    }    
    fprintf(stdout, "\n");    
    
    bool manualScaling = false;
    bool autoScaling = false;
	bool gRates = false; // generalized rate categories, separate root buffers
    
    // is nucleotides...
    int stateCount = 4;
	
    // get the number of site patterns
	int nPatterns = strlen(human);
    
    int rateCategoryCount = 4;
	
	int nRateCats = (gRates ? 1 : rateCategoryCount);
	int nRootCount = (!gRates ? 1 : rateCategoryCount);
	int nPartBuffs = 4 + nRootCount;
    int scaleCount = (manualScaling ? 2 + nRootCount : 0);
    
    // initialize the instance
    BeagleInstanceDetails instDetails;
    
    // create an instance of the BEAGLE library
	int instance = beagleCreateInstance(
                                  3,				/**< Number of tip data elements (input) */
                                  nPartBuffs,       /**< Number of partials buffers to create (input) */
                                  0,		        /**< Number of compact state representation buffers to create (input) */
                                  stateCount,		/**< Number of states in the continuous-time Markov chain (input) */
                                  nPatterns,		/**< Number of site patterns to be handled by the instance (input) */
                                  1,		        /**< Number of rate matrix eigen-decomposition buffers to allocate (input) */
                                  4,		        /**< Number of rate matrix buffers (input) */
								  nRateCats,		/**< Number of rate categories (input) */
                                  scaleCount,       /**< Number of scaling buffers */
                                  NULL,			    /**< List of potential resource on which this instance is allowed (input, NULL implies no restriction */
                                  0,			    /**< Length of resourceList list (input) */
                                BEAGLE_FLAG_FRAMEWORK_CUDA |
                                BEAGLE_FLAG_PRECISION_SINGLE | BEAGLE_FLAG_PROCESSOR_GPU | (autoScaling ? BEAGLE_FLAG_SCALING_AUTO : 0),	/**< Bit-flags indicating preferred implementation charactertistics, see BeagleFlags (input) */
                                  0,                /**< Bit-flags indicating required implementation characteristics, see BeagleFlags (input) */
                                  &instDetails);
    if (instance < 0) {
	    fprintf(stderr, "Failed to obtain BEAGLE instance\n\n");
	    exit(1);
    }

    int rNumber = instDetails.resourceNumber;
    fprintf(stdout, "Using resource %i:\n", rNumber);
    fprintf(stdout, "\tRsrc Name : %s\n",instDetails.resourceName);
    fprintf(stdout, "\tImpl Name : %s\n", instDetails.implName);
    fprintf(stdout, "\tImpl Desc : %s\n", instDetails.implDescription);
    fprintf(stdout, "\tFlags:");
    printFlags(instDetails.flags);
    fprintf(stdout, "\n\n");
    
    if (!(instDetails.flags & BEAGLE_FLAG_SCALING_AUTO))
        autoScaling = false;
    
//    beagleSetTipStates(instance, 0, getStates(human));
//    beagleSetTipStates(instance, 1, getStates(chimp));
//    beagleSetTipStates(instance, 2, getStates(gorilla));
    
    // set the sequences for each tip using partial likelihood arrays
    double *humanPartials   = getPartials(human);
    double *chimpPartials   = getPartials(chimp);
    double *gorillaPartials = getPartials(gorilla);
    
	beagleSetTipPartials(instance, 0, humanPartials);
	beagleSetTipPartials(instance, 1, chimpPartials);
	beagleSetTipPartials(instance, 2, gorillaPartials);
    
//#ifdef _WIN32
//	std::vector<double> rates(rateCategoryCount);
//#else
//	double rates[rateCategoryCount];
//#endif
//    for (int i = 0; i < rateCategoryCount; i++) {
//        rates[i] = 1.0;
//    }
	double rates[4] = { 0.03338775, 0.25191592, 0.82026848, 2.89442785 };
    
	
    // create base frequency array
	double freqs[16] = { 0.25, 0.25, 0.25, 0.25,
						 0.25, 0.25, 0.25, 0.25,
						 0.25, 0.25, 0.25, 0.25,
		                 0.25, 0.25, 0.25, 0.25 };
    
    // create an array containing site category weights

	double* weights = (double*) malloc(sizeof(double) * rateCategoryCount);

    for (int i = 0; i < rateCategoryCount; i++) {
        weights[i] = 1.0/rateCategoryCount;
    }    

	double* patternWeights = (double*) malloc(sizeof(double) * nPatterns);
    
    for (int i = 0; i < nPatterns; i++) {
        patternWeights[i] = 1.0;
    }    
    
    
	// an eigen decomposition for the JC69 model
	double evec[4 * 4] = {
        1.0,  2.0,  0.0,  0.5,
        1.0,  -2.0,  0.5,  0.0,
        1.0,  2.0, 0.0,  -0.5,
        1.0,  -2.0,  -0.5,  0.0
	};
    
	double ivec[4 * 4] = {
        0.25,  0.25,  0.25,  0.25,
        0.125,  -0.125,  0.125,  -0.125,
        0.0,  1.0,  0.0,  -1.0,
        1.0,  0.0,  -1.0,  0.0
	};
    
	double eval[4] = { 0.0, -1.3333333333333333, -1.3333333333333333, -1.3333333333333333 };
    
    // set the Eigen decomposition
	beagleSetEigenDecomposition(instance, 0, evec, ivec, eval);
    
    beagleSetStateFrequencies(instance, 0, freqs);
    
    beagleSetCategoryWeights(instance, 0, weights);
    
    beagleSetPatternWeights(instance, patternWeights);
    
    // a list of indices and edge lengths
	int nodeIndices[4] = { 0, 1, 2, 3 };
	double edgeLengths[4] = { 0.1, 0.1, 0.2, 0.1 };
	
	int* rootIndices = (int*) malloc(sizeof(int) * nRootCount);
    int* categoryWeightsIndices = (int*) malloc(sizeof(int) * nRootCount);
    int* stateFrequencyIndices = (int*) malloc(sizeof(int) * nRootCount);
	int* cumulativeScalingIndices = (int*) malloc(sizeof(int) * nRootCount);
	
	for (int i = 0; i < nRootCount; i++) {
		
		rootIndices[i] = 4 + i;
        categoryWeightsIndices[i] = 0;
        stateFrequencyIndices[i] = 0;
		cumulativeScalingIndices[i] = (manualScaling ? 2 + i : BEAGLE_OP_NONE);
		
		beagleSetCategoryRates(instance, &rates[i]);
		
		// tell BEAGLE to populate the transition matrices for the above edge lengths
		beagleUpdateTransitionMatrices(instance,     // instance
								 0,             // eigenIndex
								 nodeIndices,   // probabilityIndices
								 NULL,          // firstDerivativeIndices
								 NULL,          // secondDerivativeIndices
								 edgeLengths,   // edgeLengths
								 4);            // count
		
		// create a list of partial likelihood update operations
		// the order is [dest, destScaling, source1, matrix1, source2, matrix2]
		BeagleOperation operations[2] = {
			3, (manualScaling ? 0 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 0, 0, 1, 1,
			rootIndices[i], (manualScaling ? 1 : BEAGLE_OP_NONE), BEAGLE_OP_NONE, 2, 2, 3, 3
		};
		
		if (manualScaling)
			beagleResetScaleFactors(instance, cumulativeScalingIndices[i]);
		
		// update the partials
		beagleUpdatePartials(instance,      // instance
					   operations,     // eigenIndex
					   2,              // operationCount
					   cumulativeScalingIndices[i]);// cumulative scaling index
	}
		 
    if (autoScaling) {
        int scaleIndices[2] = {3, 4};
        beagleAccumulateScaleFactors(instance, scaleIndices, 2, BEAGLE_OP_NONE);
    }
    
	double *patternLogLik = (double*)malloc(sizeof(double) * nPatterns);
	double logL = 0.0;    
    int returnCode = 0;
    
    // calculate the site likelihoods at the root node
	returnCode = beagleCalculateRootLogLikelihoods(instance,               // instance
	                            (const int *)rootIndices,// bufferIndices
	                            (const int *)categoryWeightsIndices,                // weights
	                            (const int *)stateFrequencyIndices,                  // stateFrequencies
								cumulativeScalingIndices,// cumulative scaling index
	                            nRootCount,                      // count
	                            &logL);         // outLogLikelihoods
    
    if (returnCode < 0) {
	    fprintf(stderr, "Failed to calculate root likelihood\n\n");
    } else {

        beagleGetSiteLogLikelihoods(instance, patternLogLik);
        double sumLogL = 0.0;
        for (int i = 0; i < nPatterns; i++) {
            sumLogL += patternLogLik[i] * patternWeights[i];
//            std::cerr << "site lnL[" << i << "] = " << patternLogLik[i] << '\n';
        }
      
        fprintf(stdout, "logL = %.5f (PAUP logL = -1498.89812)\n", logL);
        fprintf(stdout, "sumLogL = %.5f\n", sumLogL);  
    }
    
// no rate heterogeneity:	
//	fprintf(stdout, "logL = %.5f (PAUP logL = -1574.63623)\n\n", logL);
	
    free(weights);
    free(patternWeights);    
    free(rootIndices);
    free(categoryWeightsIndices);
    free(stateFrequencyIndices);
    free(cumulativeScalingIndices);    
    
	free(patternLogLik);
	free(humanPartials);
	free(chimpPartials);
	free(gorillaPartials);
    
    beagleFinalizeInstance(instance);

#ifdef _WIN32
    std::cout << "\nPress ENTER to exit...\n";
    fflush( stdout);
    fflush( stderr);
    getchar();
#endif
    
}