1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
|
%module beagle
%{
/* Includes the header in the wrapper code */
#include <libhmsbeagle/beagle.h>
%}
/* Include pointer library */
%include cpointer.i
%pointer_functions(int,intp);
%pointer_functions(double,doublep);
/* Include array library */
%include carrays.i
%array_functions(int, intArray);
%array_functions(double, doubleArray);
/* Copy/paste the header file to generate wrappers */
/* First platform.h */
#ifdef _WIN32
// needed to export library symbols
#ifdef _EXPORTING
#define BEAGLE_DLLEXPORT __declspec(dllexport)
#else
#define BEAGLE_DLLEXPORT __declspec(dllimport)
#endif
/*
// automatically include the appropriate beagle library
#ifdef _WIN64
#ifdef _DEBUG
#pragma comment( lib, "libhmsbeagle64d" )
#else
#pragma comment( lib, "libhmsbeagle64" )
#endif
#else
#ifdef _DEBUG
#pragma comment( lib, "libhmsbeagle32d" )
#else
#pragma comment( lib, "libhmsbeagle32" )
#endif
#endif
*/
#ifndef M_LN2
/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
#define M_LN2 0.69314718055994530942
#endif
#else // not windows
#define BEAGLE_DLLEXPORT
#endif
/* Now beagle.h */
/**
* @anchor BEAGLE_RETURN_CODES
*
* @brief Error return codes
*
* This enumerates all possible BEAGLE return codes. Error codes are always negative.
*/
enum BeagleReturnCodes {
BEAGLE_SUCCESS = 0, /**< Success */
BEAGLE_ERROR_GENERAL = -1, /**< Unspecified error */
BEAGLE_ERROR_OUT_OF_MEMORY = -2, /**< Not enough memory could be allocated */
BEAGLE_ERROR_UNIDENTIFIED_EXCEPTION = -3, /**< Unspecified exception */
BEAGLE_ERROR_UNINITIALIZED_INSTANCE = -4, /**< The instance index is out of range,
* or the instance has not been created */
BEAGLE_ERROR_OUT_OF_RANGE = -5, /**< One of the indices specified exceeded the range of the
* array */
BEAGLE_ERROR_NO_RESOURCE = -6, /**< No resource matches requirements */
BEAGLE_ERROR_NO_IMPLEMENTATION = -7, /**< No implementation matches requirements */
BEAGLE_ERROR_FLOATING_POINT = -8 /**< Floating-point range exceeded */
};
/**
* @anchor BEAGLE_FLAGS
*
* @brief Hardware and implementation capability flags
*
* This enumerates all possible hardware and implementation capability flags.
* Each capability is a bit in a 'long'
*/
enum BeagleFlags {
BEAGLE_FLAG_PRECISION_SINGLE = 1 << 0, /**< Single precision computation */
BEAGLE_FLAG_PRECISION_DOUBLE = 1 << 1, /**< Double precision computation */
BEAGLE_FLAG_COMPUTATION_SYNCH = 1 << 2, /**< Synchronous computation (blocking) */
BEAGLE_FLAG_COMPUTATION_ASYNCH = 1 << 3, /**< Asynchronous computation (non-blocking) */
BEAGLE_FLAG_EIGEN_REAL = 1 << 4, /**< Real eigenvalue computation */
BEAGLE_FLAG_EIGEN_COMPLEX = 1 << 5, /**< Complex eigenvalue computation */
BEAGLE_FLAG_SCALING_MANUAL = 1 << 6, /**< Manual scaling */
BEAGLE_FLAG_SCALING_AUTO = 1 << 7, /**< Auto-scaling on */
BEAGLE_FLAG_SCALING_ALWAYS = 1 << 8, /**< Scale at every updatePartials */
BEAGLE_FLAG_SCALING_DYNAMIC = 1 << 19, /**< Manual scaling with dynamic checking */
BEAGLE_FLAG_SCALERS_RAW = 1 << 9, /**< Save raw scalers */
BEAGLE_FLAG_SCALERS_LOG = 1 << 10, /**< Save log scalers */
BEAGLE_FLAG_INVEVEC_STANDARD = 1 << 20, /**< Inverse eigen vectors passed to BEAGLE have not been transposed */
BEAGLE_FLAG_INVEVEC_TRANSPOSED = 1 << 21, /**< Inverse eigen vectors passed to BEAGLE have been transposed */
BEAGLE_FLAG_VECTOR_SSE = 1 << 11, /**< SSE computation */
BEAGLE_FLAG_VECTOR_NONE = 1 << 12, /**< No vector computation */
BEAGLE_FLAG_THREADING_OPENMP = 1 << 13, /**< OpenMP threading */
BEAGLE_FLAG_THREADING_NONE = 1 << 14, /**< No threading */
BEAGLE_FLAG_PROCESSOR_CPU = 1 << 15, /**< Use CPU as main processor */
BEAGLE_FLAG_PROCESSOR_GPU = 1 << 16, /**< Use GPU as main processor */
BEAGLE_FLAG_PROCESSOR_FPGA = 1 << 17, /**< Use FPGA as main processor */
BEAGLE_FLAG_PROCESSOR_CELL = 1 << 18, /**< Use Cell as main processor */
BEAGLE_FLAG_FRAMEWORK_CUDA = 1 << 22, /**< Use CUDA implementation with GPU resources */
BEAGLE_FLAG_FRAMEWORK_OPENCL = 1 << 23 /**< Use OpenCL implementation with GPU resources */
};
/**
* @anchor BEAGLE_OP_CODES
*
* @brief Operation codes
*
* This enumerates all possible BEAGLE operation codes.
*/
enum BeagleOpCodes {
BEAGLE_OP_COUNT = 7, /**< Total number of integers per beagleUpdatePartials operation */
BEAGLE_OP_NONE = -1 /**< Specify no use for indexed buffer */
};
/**
* @brief Information about a specific instance
*/
typedef struct {
int resourceNumber; /**< Resource upon which instance is running */
char* resourceName; /**< Name of resource on which this instance is running as a NULL-terminated
* character string */
char* implName; /**< Name of implementation on which this instance is running as a
* NULL-terminated character string */
char* implDescription; /**< Description of implementation with details such as how auto-scaling is performed */
long flags; /**< Bit-flags that characterize the activate
* capabilities of the resource and implementation for this instance */
} BeagleInstanceDetails;
/**
* @brief Description of a hardware resource
*/
typedef struct {
char* name; /**< Name of resource as a NULL-terminated character string */
char* description; /**< Description of resource as a NULL-terminated character string */
long supportFlags; /**< Bit-flags of supported capabilities on resource */
long requiredFlags;/**< Bit-flags that identify resource type */
} BeagleResource;
/**
* @brief List of hardware resources
*/
typedef struct {
BeagleResource* list; /**< Pointer list of resources */
int length; /**< Length of list */
} BeagleResourceList;
/* using C calling conventions so that C programs can successfully link the beagle library
* (brace is closed at the end of this file)
*/
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Get list of hardware resources
*
* This function returns a pointer to a BeagleResourceList struct, which includes
* a BeagleResource array describing the available hardware resources.
*
* @return A list of hardware resources available to the library as a BeagleResourceList
*/
BEAGLE_DLLEXPORT BeagleResourceList* beagleGetResourceList(void);
/**
* @brief Create a single instance
*
* This function creates a single instance of the BEAGLE library and can be called
* multiple times to create multiple data partition instances each returning a unique
* identifier.
*
* @param tipCount Number of tip data elements (input)
* @param partialsBufferCount Number of partials buffers to create (input)
* @param compactBufferCount Number of compact state representation buffers to create (input)
* @param stateCount Number of states in the continuous-time Markov chain (input)
* @param patternCount Number of site patterns to be handled by the instance (input)
* @param eigenBufferCount Number of rate matrix eigen-decomposition, category weight, and
* state frequency buffers to allocate (input)
* @param matrixBufferCount Number of transition probability matrix buffers (input)
* @param categoryCount Number of rate categories (input)
* @param scaleBufferCount Number of scale buffers to create, ignored for auto scale or always scale (input)
* @param resourceList List of potential resources on which this instance is allowed
* (input, NULL implies no restriction)
* @param resourceCount Length of resourceList list (input)
* @param preferenceFlags Bit-flags indicating preferred implementation characteristics,
* see BeagleFlags (input)
* @param requirementFlags Bit-flags indicating required implementation characteristics,
* see BeagleFlags (input)
* @param returnInfo Pointer to return implementation and resource details
*
* @return the unique instance identifier (<0 if failed, see @ref BEAGLE_RETURN_CODES
* "BeagleReturnCodes")
*/
// TODO: if setting your own matrices, might not need eigen buffers allocated, but still need
// category weight and state frequency buffers
BEAGLE_DLLEXPORT int beagleCreateInstance(int tipCount,
int partialsBufferCount,
int compactBufferCount,
int stateCount,
int patternCount,
int eigenBufferCount,
int matrixBufferCount,
int categoryCount,
int scaleBufferCount,
int* resourceList,
int resourceCount,
long preferenceFlags,
long requirementFlags,
BeagleInstanceDetails* returnInfo);
/**
* @brief Finalize this instance
*
* This function finalizes the instance by releasing allocated memory
*
* @param instance Instance number
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleFinalizeInstance(int instance);
/**
* @brief Finalize the library
*
* This function finalizes the library and releases all allocated memory.
* This function is automatically called under GNU C via __attribute__ ((destructor)).
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleFinalize(void);
/**
* @brief Set the compact state representation for tip node
*
* This function copies a compact state representation into an instance buffer.
* Compact state representation is an array of states: 0 to stateCount - 1 (missing = stateCount).
* The inStates array should be patternCount in length (replication across categoryCount is not
* required).
*
* @param instance Instance number (input)
* @param tipIndex Index of destination compactBuffer (input)
* @param inStates Pointer to compact states (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetTipStates(int instance,
int tipIndex,
const int* inStates);
/**
* @brief Set an instance partials buffer for tip node
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount in length. For most applications this will be used
* to set the partial likelihoods for the observed states. Internally, the partials will be copied
* categoryCount times.
*
* @param instance Instance number in which to set a partialsBuffer (input)
* @param tipIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetTipPartials(int instance,
int tipIndex,
const double* inPartials);
/**
* @brief Set an instance partials buffer
*
* This function copies an array of partials into an instance buffer. The inPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param instance Instance number in which to set a partialsBuffer (input)
* @param bufferIndex Index of destination partialsBuffer (input)
* @param inPartials Pointer to partials values to set (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetPartials(int instance,
int bufferIndex,
const double* inPartials);
/**
* @brief Get partials from an instance buffer
*
* This function copies an instance buffer into the array outPartials. The outPartials array should
* be stateCount * patternCount * categoryCount in length.
*
* @param instance Instance number from which to get partialsBuffer (input)
* @param bufferIndex Index of source partialsBuffer (input)
* @param scaleIndex Index of scaleBuffer to apply to partialsBuffer (input)
* @param outPartials Pointer to which to receive partialsBuffer (output)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleGetPartials(int instance,
int bufferIndex,
int scaleIndex,
double* outPartials);
/**
* @brief Set an eigen-decomposition buffer
*
* This function copies an eigen-decomposition into an instance buffer.
*
* @param instance Instance number (input)
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param inEigenVectors Flattened matrix (stateCount x stateCount) of eigen-vectors (input)
* @param inInverseEigenVectors Flattened matrix (stateCount x stateCount) of inverse-eigen- vectors
* (input)
* @param inEigenValues Vector of eigenvalues
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetEigenDecomposition(int instance,
int eigenIndex,
const double* inEigenVectors,
const double* inInverseEigenVectors,
const double* inEigenValues);
/**
* @brief Set a state frequency buffer
*
* This function copies a state frequency array into an instance buffer.
*
* @param instance Instance number (input)
* @param stateFrequenciesIndex Index of state frequencies buffer (input)
* @param inStateFrequencies State frequencies array (stateCount) (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetStateFrequencies(int instance,
int stateFrequenciesIndex,
const double* inStateFrequencies);
/**
* @brief Set a category weights buffer
*
* This function copies a category weights array into an instance buffer.
*
* @param instance Instance number (input)
* @param categoryWeightsIndex Index of category weights buffer (input)
* @param inCategoryWeights Category weights array (categoryCount) (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetCategoryWeights(int instance,
int categoryWeightsIndex,
const double* inCategoryWeights);
/**
* @brief Set category rates
*
* This function sets the vector of category rates for an instance.
*
* @param instance Instance number (input)
* @param inCategoryRates Array containing categoryCount rate scalers (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetCategoryRates(int instance,
const double* inCategoryRates);
/**
* @brief Set pattern weights
*
* This function sets the vector of pattern weights for an instance.
*
* @param instance Instance number (input)
* @param inPatternWeights Array containing patternCount weights (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetPatternWeights(int instance,
const double* inPatternWeights);
/**
* @brief Calculate a list of transition probability matrices
*
* This function calculates a list of transition probabilities matrices and their first and
* second derivatives (if requested).
*
* @param instance Instance number (input)
* @param eigenIndex Index of eigen-decomposition buffer (input)
* @param probabilityIndices List of indices of transition probability matrices to update
* (input)
* @param firstDerivativeIndices List of indices of first derivative matrices to update
* (input, NULL implies no calculation)
* @param secondDerivativeIndices List of indices of second derivative matrices to update
* (input, NULL implies no calculation)
* @param edgeLengths List of edge lengths with which to perform calculations (input)
* @param count Length of lists
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleUpdateTransitionMatrices(int instance,
int eigenIndex,
const int* probabilityIndices,
const int* firstDerivativeIndices,
const int* secondDerivativeIndices,
const double* edgeLengths,
int count);
/**
* @brief Set a finite-time transition probability matrix
*
* This function copies a finite-time transition probability matrix into a matrix buffer. This function
* is used when the application wishes to explicitly set the transition probability matrix rather than
* using the beagleSetEigenDecomposition and beagleUpdateTransitionMatrices functions. The inMatrix array should be
* of size stateCount * stateCount * categoryCount and will contain one matrix for each rate category.
*
* @param instance Instance number (input)
* @param matrixIndex Index of matrix buffer (input)
* @param inMatrix Pointer to source transition probability matrix (input)
* @param paddedValue Value to be used for padding for ambiguous states (e.g. 1 for probability matrices, 0 for derivative matrices) (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetTransitionMatrix(int instance,
int matrixIndex,
const double* inMatrix,
double paddedValue);
/**
* @brief Get a finite-time transition probability matrix
*
* This function copies a finite-time transition matrix buffer into the array outMatrix. The
* outMatrix array should be of size stateCount * stateCount * categoryCount and will be filled
* with one matrix for each rate category.
*
* @param instance Instance number (input)
* @param matrixIndex Index of matrix buffer (input)
* @param outMatrix Pointer to destination transition probability matrix (output)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleGetTransitionMatrix(int instance,
int matrixIndex,
double* outMatrix);
/**
* @brief Set multiple transition matrices
*
* This function copies multiple transition matrices into matrix buffers. This function
* is used when the application wishes to explicitly set the transition matrices rather than
* using the beagleSetEigenDecomposition and beagleUpdateTransitionMatrices functions. The inMatrices array should be
* of size stateCount * stateCount * categoryCount * count.
*
* @param instance Instance number (input)
* @param matrixIndices Indices of matrix buffers (input)
* @param inMatrices Pointer to source transition matrices (input)
* @param paddedValues Values to be used for padding for ambiguous states (e.g. 1 for probability matrices, 0 for derivative matrices) (input)
* @param count Number of transition matrices (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleSetTransitionMatrices(int instance,
const int* matrixIndices,
const double* inMatrices,
const double* paddedValues,
int count);
/**
* @brief A list of integer indices which specify a partial likelihoods operation.
*/
typedef struct {
int destinationPartials; /**< index of destination, or parent, partials buffer */
int destinationScaleWrite; /**< index of scaling buffer to write to (if set to BEAGLE_OP_NONE then calculation of new scalers is disabled) */
int destinationScaleRead; /**< index of scaling buffer to read from (if set to BEAGLE_OP_NONE then use of existing scale factors is disabled) */
int child1Partials; /**< index of first child partials buffer */
int child1TransitionMatrix; /**< index of transition matrix of first partials child buffer */
int child2Partials; /**< index of second child partials buffer */
int child2TransitionMatrix; /**< index of transition matrix of second partials child buffer */
} BeagleOperation;
/**
* @brief Calculate or queue for calculation partials using a list of operations
*
* This function either calculates or queues for calculation a list partials. Implementations
* supporting ASYNCH may queue these calculations while other implementations perform these
* operations immediately and in order.
*
* @param instance Instance number (input)
* @param operations BeagleOperation list specifying operations (input)
* @param operationCount Number of operations (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to store accumulated factors (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleUpdatePartials(const int instance,
const BeagleOperation* operations,
int operationCount,
int cumulativeScaleIndex);
/**
* @brief Block until all calculations that write to the specified partials have completed.
*
* This function is optional and only has to be called by clients that "recycle" partials.
*
* If used, this function must be called after an beagleUpdatePartials call and must refer to
* indices of "destinationPartials" that were used in a previous beagleUpdatePartials
* call. The library will block until those partials have been calculated.
*
* @param instance Instance number (input)
* @param destinationPartials List of the indices of destinationPartials that must be
* calculated before the function returns
* @param destinationPartialsCount Number of destinationPartials (input)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleWaitForPartials(const int instance,
const int* destinationPartials,
int destinationPartialsCount);
/**
* @brief Accumulate scale factors
*
* This function adds (log) scale factors from a list of scaleBuffers to a cumulative scale
* buffer. It is used to calculate the marginal scaling at a specific node for each site.
*
* @param instance Instance number (input)
* @param scaleIndices List of scaleBuffers to add (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer to accumulate factors into (input)
*/
BEAGLE_DLLEXPORT int beagleAccumulateScaleFactors(int instance,
const int* scaleIndices,
int count,
int cumulativeScaleIndex);
/**
* @brief Remove scale factors
*
* This function removes (log) scale factors from a cumulative scale buffer. The
* scale factors to be removed are indicated in a list of scaleBuffers.
*
* @param instance Instance number (input)
* @param scaleIndices List of scaleBuffers to remove (input)
* @param count Number of scaleBuffers in list (input)
* @param cumulativeScaleIndex Index number of scaleBuffer containing accumulated factors (input)
*/
BEAGLE_DLLEXPORT int beagleRemoveScaleFactors(int instance,
const int* scaleIndices,
int count,
int cumulativeScaleIndex);
/**
* @brief Reset scalefactors
*
* This function resets a cumulative scale buffer.
*
* @param instance Instance number (input)
* @param cumulativeScaleIndex Index number of cumulative scaleBuffer (input)
*/
BEAGLE_DLLEXPORT int beagleResetScaleFactors(int instance,
int cumulativeScaleIndex);
/**
* @brief Copy scale factors
*
* This function copies scale factors from one buffer to another.
*
* @param instance Instance number (input)
* @param destScalingIndex Destination scaleBuffer (input)
* @param srcScalingIndex Source scaleBuffer (input)
*/
BEAGLE_DLLEXPORT int beagleCopyScaleFactors(int instance,
int destScalingIndex,
int srcScalingIndex);
/**
* @brief Calculate site log likelihoods at a root node
*
* This function integrates a list of partials at a node with respect to a set of partials-weights
* and state frequencies to return the log likelihood sum
*
* @param instance Instance number (input)
* @param bufferIndices List of partialsBuffer indices to integrate (input)
* @param categoryWeightsIndices List of weights to apply to each partialsBuffer (input). There
* should be one categoryCount sized set for each of
* parentBufferIndices
* @param stateFrequenciesIndices List of state frequencies for each partialsBuffer (input). There
* should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scaleBuffers containing accumulated factors to apply to
* each partialsBuffer (input). There should be one index for each
* of parentBufferIndices
* @param count Number of partialsBuffer to integrate (input)
* @param outSumLogLikelihood Pointer to destination for resulting log likelihood (output)
*
* @return error code
*/
// TODO: only need one state frequency index
BEAGLE_DLLEXPORT int beagleCalculateRootLogLikelihoods(int instance,
const int* bufferIndices,
const int* categoryWeightsIndices,
const int* stateFrequenciesIndices,
const int* cumulativeScaleIndices,
int count,
double* outSumLogLikelihood);
/**
* @brief Calculate site log likelihoods and derivatives along an edge
*
* This function integrates a list of partials at a parent and child node with respect
* to a set of partials-weights and state frequencies to return the log likelihood
* and first and second derivative sums
*
* @param instance Instance number (input)
* @param parentBufferIndices List of indices of parent partialsBuffers (input)
* @param childBufferIndices List of indices of child partialsBuffers (input)
* @param probabilityIndices List indices of transition probability matrices for this edge
* (input)
* @param firstDerivativeIndices List indices of first derivative matrices (input)
* @param secondDerivativeIndices List indices of second derivative matrices (input)
* @param categoryWeightsIndices List of weights to apply to each partialsBuffer (input)
* @param stateFrequenciesIndices List of state frequencies for each partialsBuffer (input). There
* should be one set for each of parentBufferIndices
* @param cumulativeScaleIndices List of scaleBuffers containing accumulated factors to apply to
* each partialsBuffer (input). There should be one index for each
* of parentBufferIndices
* @param count Number of partialsBuffers (input)
* @param outSumLogLikelihood Pointer to destination for resulting log likelihood (output)
* @param outSumFirstDerivative Pointer to destination for resulting first derivative (output)
* @param outSumSecondDerivative Pointer to destination for resulting second derivative (output)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleCalculateEdgeLogLikelihoods(int instance,
const int* parentBufferIndices,
const int* childBufferIndices,
const int* probabilityIndices,
const int* firstDerivativeIndices,
const int* secondDerivativeIndices,
const int* categoryWeightsIndices,
const int* stateFrequenciesIndices,
const int* cumulativeScaleIndices,
int count,
double* outSumLogLikelihood,
double* outSumFirstDerivative,
double* outSumSecondDerivative);
/**
* @brief Get site log likelihoods for last beagleCalculateRootLogLikelihoods or
* beagleCalculateEdgeLogLikelihoods call
*
* This function returns the log likelihoods for each site
*
* @param instance Instance number (input)
* @param outLogLikelihoods Pointer to destination for resulting log likelihoods (output)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleGetSiteLogLikelihoods(int instance,
double* outLogLikelihoods);
/**
* @brief Get site derivatives for last beagleCalculateEdgeLogLikelihoods call
*
* This function returns the derivatives for each site
*
* @param instance Instance number (input)
* @param outFirstDerivatives Pointer to destination for resulting first derivatives (output)
* @param outSecondDerivatives Pointer to destination for resulting second derivatives (output)
*
* @return error code
*/
BEAGLE_DLLEXPORT int beagleGetSiteDerivatives(int instance,
double* outFirstDerivatives,
double* outSecondDerivatives);
/* using C calling conventions so that C programs can successfully link the beagle library
* (closing brace)
*/
#ifdef __cplusplus
}
#endif
/* Add in array functions */
%array_functions(BeagleOperation, BeagleOperationArray);
/* Add in Python code */
%pythoncode %{
def createStates(st,ttab):
states = new_intArray(len(st))
for i in range(0,len(st)):
intArray_setitem(states,i,ttab[st[i]])
return states
def make_intarray(ia):
result = new_intArray(len(ia))
for i in range(0,len(ia)):
intArray_setitem(result,i,ia[i])
return result
def make_doublearray(da):
result = new_doubleArray(len(da))
for i in range(0,len(da)):
doubleArray_setitem(result,i,da[i])
return result
def make_operation(arg):
o = BeagleOperation()
o.destinationPartials = arg[0]
o.destinationScaleWrite = arg[1]
o.destinationScaleRead = arg[2]
o.child1Partials = arg[3]
o.child1TransitionMatrix = arg[4]
o.child2Partials = arg[5]
o.child2TransitionMatrix = arg[6]
return o
def createPatternWeights(wts):
weights = new_doubleArray(len(wts))
for i in range(0,len(wts)):
doubleArray_setitem(weights,i,wts[i])
return weights
%}
|