1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*
------------------------------------------------------------------------------
BOUND.C
By Bob Jenkins, in association with his Masters Thesis
Routines dealing with boundary manipulations of weaves
Public Domain
------------------------------------------------------------------------------
*/
#include <stdlib.h>
#include <gc.h>
#include "standard.h"
#include "order.h"
#include "control.h"
#include "bound.h"
/*
------------------------------------------------------------------------------
B_MANIP computes values of the global boundary variables.
A step is either adding a crossing, adding a crossing and removing a pair of
boundary crossings, or just removing a pair of boundary crossings.
------------------------------------------------------------------------------
*/
word list[BIGWEAVE]; /* description of first new weave */
word list2[BIGWEAVE]; /* description of second, if needed */
word old_going_in[BIGWEAVE];/* Was *i* an input? *old_going_in[i]*. */
word going_in[BIGWEAVE]; /* Will *i* be an input? *going_in[i]*. */
word map[BIGWEAVE]; /* i of old weave becomes map[i] of new weave */
word first; /* first boundary crossing to remove */
word second; /* second boundary crossing to remove */
word right; /* Is the crossing being added be righthanded? */
word oldcross; /* number of boundary crossings in the old weave */
word newcross; /* number of boundary crossings in each new weave */
word oldin; /* number of inputs to the old weave */
word newin; /* number of inputs to the new weave */
void b_manip(weave *oldweaves)
{
word i, j, k;
ub4 boundary[2];
oldcross = plan.oldn; /* number of original boundary crossings */
oldin = oldcross/2; /* number of original inputs */
newcross = plan.newn; /* number of boundary crossings in resulting weaves */
newin = newcross/2; /* " inputs " */
/*--------------------------------------------------- Compute old_going_in */
for (i = 0; !oldweaves[i].tag.len; i++) ; /* find a defined weave */
boundary[0] = oldweaves[i].boundary[0];
boundary[1] = oldweaves[i].boundary[1];
for (i = 0; i < oldcross; i++)
old_going_in[i] = 1; /* pretend all crossings are inputs */
for (i = 0; i < oldin; i++)
{
k = (i < 6) ? 0 : 1;
if (old_going_in[(boundary[k] & 0x1f)] == 0) {
printf("cannot have both ends of a string be an output\n");
}
old_going_in[(boundary[k] & 0x1f)] = 0; /* unmark the outputs */
boundary[k] >>= 5;
}
right = plan.right;
if (plan.which != -1)
{
for (i = 0; i < oldcross; ++i)
{
if (old_going_in[i] != plan.going_in[i]) {
printf("going_in is messed up\n");
break;
}
}
}
/*--------------------------- Set first and second, if they need to be set */
first = plan.r0[0];
second = plan.r1[0];
if (plan.reductions && plan.which != -1) /* crossing added, pair removed */
{
if (first > plan.which+1) --first;
if (second > plan.which+1) --second;
if (first > plan.which) --first;
if (second > plan.which) --second;
}
else ; /* crossing added, no pair removed */
/*---------------------------------------------------------------- Set map */
if (plan.reductions == 0)
{
for (i = 0, j = 0; i < oldcross+2; ++i)
if ((i != plan.which) && (i != plan.which+2)) map[j++] = i;
}
else if (plan.which == (-1))
{
for (i = 0, j = 0; j < oldcross; ++j)
if ((j != plan.r0[0]) && (j != plan.r1[0])) map[j] = i++;
}
else if (plan.r0[0] > plan.r1[0])
{
for (i = 0; i < oldcross; i++) map[i] = i;
map[first] = (second);
map[second] = (first);
}
else if (plan.which == 0)
{
for (i = 0; i < oldcross; i++) map[i] = i+1;
map[0] = 0;
map[oldcross-1] = 1;
}
else
{
for (i = 0; i < oldcross; i++) map[i] = i-1;
map[0] = oldcross-2;
map[oldcross-1] = oldcross-1;
}
/*----------------------------------------------------------- Set going_in */
if (plan.which != (-1))
{
for (i = 0; i < oldcross; i++)
{
going_in[map[i]] = old_going_in[i];
}
}
else
{
for (i = 0; i < oldcross; i++)
{
if ((i != first) && (i != second))
{
going_in[map[i]] = old_going_in[i];
}
}
}
if (plan.reductions == 0)
{
going_in[plan.which] = plan.prev;
going_in[plan.which+2] = !plan.prev;
}
}
/*
------------------------------------------------------------------------------
B_NO_PAIRS adds a single crossing to a single weave.
Either the crossing is correct, in which case *one* will be set, or it is
wrong. In this case no more than two weaves are needed, so *two* will be set.
------------------------------------------------------------------------------
*/
void b_no_pairs(word *list, /* list of original inputs/outputs, modified by this routine */
word *list2, /* inputs/outputs of the second new weave */
word *one, /* will one new weave suffice? */
word *two) /* will two new weaves suffice? */
{
word i,
a,
b,
c;
/*-------------------------------------------------- Make the new boundary */
for (i = oldcross; --i >= 0;) list[map[i]] = map[list[i]];
a = plan.which+1;
list[a-1] = a+1;
list[a+1] = a-1;
/*------------------------- Decide if the crossing needs to be operated on */
c = a-1;
b_right(list, going_in, c, a, i);
*one = (i == right);
*two = !*one;
if (*two)
{
for (i = newcross; --i >= 0;) list2[i] = list[i];
b = (plan.prev == going_in[a]) ? a-1 : a+1;
c = (plan.prev == going_in[a]) ? a+1 : a-1;
list2[list2[a]] = b;
list2[b] = list2[a];
list2[a] = c;
list2[c] = a;
}
}
/*
------------------------------------------------------------------------------
B_ONE_PAIR handles adding one crossing and removing one pair of boundary
crossings. This may require replacing the original weave with one, two, or
more new weaves. If more than two are needed, do not set *one* or *two*.
------------------------------------------------------------------------------
*/
void b_one_pair(list, list2, one, two)
word *list; /* list of original inputs/outputs, modified by this routine */
word *list2; /* inputs/outputs of the second new weave */
word *one; /* will one new weave suffice? */
word *two; /* will two new weaves suffice? */
{
word a;
word i;
word crossed;
word shouldBeRight;
word temp[BIGWEAVE];
/*---------------------------------- Check for a couple easy to spot cases */
a = plan.which;
if ((plan.r0[0] == a+1) || (plan.r1[0] == a+1))
{ /* A Type I Reidemeister move */
*one = 1;
return;
}
/*---------------- Handle the cases where the reduction is the 0..n-1 jump */
if (plan.r0[0] < plan.r1[0])
{
if (old_going_in[0] && old_going_in[oldcross-1]) return;
crossed = b_cross(first, second, list[first], list[second]);
b_right(list, old_going_in, first, second, shouldBeRight);
/* werecrossed */
if (list[first] == second)
{
/* A Type I Reidemeister move */
for (i = oldcross; --i >= 0; ) temp[map[i]] = list[i];
for (i = oldcross; --i >= 0; ) list[i] = map[temp[i]];
*one = 1;
return;
}
if (old_going_in[first] != old_going_in[second])
{
/* this may be complicated */
return;
}
for (i = oldcross; --i >= 0; ) temp[map[i]] = list[i];
for (i = oldcross; --i >= 0; ) list[i] = map[temp[i]];
if (!old_going_in[first] && !old_going_in[second] &&
(crossed ^ shouldBeRight ^ right))
{
*two = 1;
for (i = 0; i < newcross; i++) list2[i] = list[i];
if (plan.which == 0) b_switch(list2, 1, 0, i);
else b_switch(list2, newcross-1, newcross-2, i);
}
else *one = 1;
return;
}
/*-------- Handle the cases where the numbers on the boundary are adjacent */
if (list[first] == second) /* A Type I Reidemeister move */
{
*one = 1;
return;
}
crossed = b_cross(first, second, list[first], list[second]);/* werecrossed */
b_right(list, old_going_in, first, second, a); /* old crossing righthanded */
b_switch(list, first, second, i); /* switch the boundary crossings */
b_right(list, going_in, first, second, i); /* new should be righthanded */
*one = (((crossed) && (a != right)) || ((!crossed) && (i == right)));
if (*two = !*one)
{
if (old_going_in[first] != old_going_in[second])
{
*two = 0;
b_switch(list, first, second, i);
}
else
{
for (i = newcross; --i >= 0; ) list2[i] = list[i];
b_switch(list2, first, second, i);
}
}
}
|