File: Files.pod

package info (click to toggle)
libimager-perl 0.50-1etch1
  • links: PTS
  • area: main
  • in suites: etch
  • size: 3,120 kB
  • ctags: 2,907
  • sloc: ansic: 21,092; perl: 15,461; makefile: 56
file content (902 lines) | stat: -rw-r--r-- 27,186 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
=head1 NAME

Imager::Files - working with image files

=head1 SYNOPSIS

  my $img = ...;
  $img->write(file=>$filename, type=>$type)
    or die "Cannot write: ",$img->errstr;

  $img = Imager->new;
  $img->read(file=>$filename, type=>$type)
    or die "Cannot read: ", $img->errstr;

  Imager->write_multi({ file=> $filename, ... }, @images)
    or die "Cannot write: ", Imager->errstr;

  my @imgs = Imager->read_multi(file=>$filename)
    or die "Cannot read: ", Imager->errstr;

  Imager->set_file_limits(width=>$max_width, height=>$max_height)

=head1 DESCRIPTION

You can read and write a variety of images formats, assuming you have
the appropriate libraries, and images can be read or written to/from
files, file handles, file descriptors, scalars, or through callbacks.

To see which image formats Imager is compiled to support the following
code snippet is sufficient:

  use Imager;
  print join " ", keys %Imager::formats;

This will include some other information identifying libraries rather
than file formats.

=over 

=item read

Reading writing to and from files is simple, use the C<read()>
method to read an image:

  my $img = Imager->new;
  $img->read(file=>$filename, type=>$type)
    or die "Cannot read $filename: ", $img->errstr;

=item write

and the C<write()> method to write an image:

  $img->write(file=>$filename, type=>$type)
    or die "Cannot write $filename: ", $img->errstr;

=item read_multi

If you're reading from a format that supports multiple images per
file, use the C<read_multi()> method:

  my @imgs = Imager->read_multi(file=>$filename, type=>$type)
    or die "Cannot read $filename: ", Imager->errstr;

=item write_multi

and if you want to write multiple images to a single file use the
C<write_multi()> method:

  Imager->write_multi({ file=> $filename, type=>$type }, @images)
    or die "Cannot write $filename: ", Imager->errstr;

=back

If the I<filename> includes an extension that Imager recognizes, then
you don't need the I<type>, but you may want to provide one anyway.
See L</Guessing types> for information on controlling this
recognition.

The C<type> parameter is a lowercase representation of the file type,
and can be any of the following:

  bmp   Windows BitMaP (BMP)
  gif   Graphics Interchange Format (GIF)
  jpeg  JPEG/JFIF
  png   Portable Network Graphics (PNG)
  pnm   Portable aNyMap (PNM)
  raw   Raw
  rgb   SGI .rgb files
  tga   TARGA
  tiff  Tagged Image File Format (TIFF)

When you read an image, Imager may set some tags, possibly including
information about the spatial resolution, textual information, and
animation information.  See L<Imager::ImageTypes/Tags> for specifics.

The open() method is a historical alias for the read() method.

=head2 Input and output

When reading or writing you can specify one of a variety of sources or
targets:

=over

=item file

The C<file> parameter is the name of the image file to be written to
or read from.  If Imager recognizes the extension of the file you do
not need to supply a C<type>.

=item fh

C<fh> is a file handle, typically either returned from
C<<IO::File->new()>>, or a glob from an C<open> call.  You should call
C<binmode> on the handle before passing it to Imager.

Imager will set the handle to autoflush to make sure any buffered data
is flushed , since Imager will write to the file descriptor (from
fileno()) rather than writing at the perl level.

=item fd

C<fd> is a file descriptor.  You can get this by calling the
C<fileno()> function on a file handle, or by using one of the standard
file descriptor numbers.

If you get this from a perl file handle, you may need to flush any
buffered output, otherwise it may appear in the output stream after
the image.

=item data

When reading data, C<data> is a scalar containing the image file data,
when writing, C<data> is a reference to the scalar to save the image
file data too.  For GIF images you will need giflib 4 or higher, and
you may need to patch giflib to use this option for writing.

=item callback

Imager will make calls back to your supplied coderefs to read, write
and seek from/to/through the image file.

When reading from a file you can use either C<callback> or C<readcb>
to supply the read callback, and when writing C<callback> or
C<writecb> to supply the write callback.

When writing you can also supply the C<maxbuffer> option to set the
maximum amount of data that will be buffered before your write
callback is called.  Note: the amount of data supplied to your
callback can be smaller or larger than this size.

The read callback is called with 2 parameters, the minimum amount of
data required, and the maximum amount that Imager will store in it's C
level buffer.  You may want to return the minimum if you have a slow
data source, or the maximum if you have a fast source and want to
prevent many calls to your perl callback.  The read data should be
returned as a scalar.

Your write callback takes exactly one parameter, a scalar containing
the data to be written.  Return true for success.

The seek callback takes 2 parameters, a I<POSITION>, and a I<WHENCE>,
defined in the same way as perl's seek function.

You can also supply a C<closecb> which is called with no parameters
when there is no more data to be written.  This could be used to flush
buffered data.

=back

=head2 Guessing types

Imager uses the code reference in $Imager::FORMATGUESS to guess the
file type when you don't supply a C<type>.  The code reference is
called with a single parameter, the filename of the file.  The code
reference is only called if a C<file> parameter is supplied to the
file access method.

Return either a valid Imager file type, or undef.

  # I'm writing jpegs to weird filenames
  local $Imager::FORMATGUESS = sub { 'jpeg' };

=head2 Limiting the sizes of images you read

=over

=item set_file_limits

In some cases you will be receiving images from an untested source,
such as submissions via CGI.  To prevent such images from consuming
large amounts of memory, you can set limits on the dimensions of
images you read from files:

=over

=item *

width - limit the width in pixels of the image

=item *

height - limit the height in pixels of the image

=item *

bytes - limits the amount of storage used by the image.  This depends
on the width, height, channels and sample size of the image.  For
paletted images this is calculated as if the image was expanded to a
direct color image.

=back

To set the limits, call the class method set_file_limits:

  Imager->set_file_limits(width=>$max_width, height=>$max_height);

You can pass any or all of the limits above, any limits you do not
pass are left as they were.

Any limit of zero is treated as unlimited.

By default, all of the limits are zero, or unlimited.

You can reset all of the limited to their defaults by passing in the
reset parameter as a true value:

  # no limits
  Imager->set_file_limits(reset=>1);

This can be used with the other limits to reset all but the limit you
pass:

  # only width is limited
  Imager->set_file_limits(reset=>1, width=>100);

  # only bytes is limited
  Imager->set_file_limits(reset=>1, bytes=>10_000_000);

=item get_file_limits

You can get the current limits with the get_file_limits() method:

  my ($max_width, $max_height, $max_bytes) =
     Imager->get_file_limits();

=back

=head1 TYPE SPECIFIC INFORMATION

The different image formats can write different image type, and some have
different options to control how the images are written.

When you call C<write()> or C<write_multi()> with an option that has
the same name as a tag for the image format you're writing, then the
value supplied to that option will be used to set the corresponding
tag in the image.  Depending on the image format, these values will be
used when writing the image.

This replaces the previous options that were used when writing GIF
images.  Currently if you use an obsolete option, it will be converted
to the equivalent tag and Imager will produced a warning.  You can
suppress these warnings by calling the C<Imager::init()> function with
the C<warn_obsolete> option set to false:

  Imager::init(warn_obsolete=>0);

At some point in the future these obsolete options will no longer be
supported.

=head2 PNM (Portable aNy Map)

Imager can write PGM (Portable Gray Map) and PPM (Portable PixMaps)
files, depending on the number of channels in the image.  Currently
the images are written in binary formats.  Only 1 and 3 channel images
can be written, including 1 and 3 channel paletted images.

  $img->write(file=>'foo.ppm') or die $img->errstr;

Imager can read both the ASCII and binary versions of each of the PBM
(Portable BitMap), PGM and PPM formats.

  $img->read(file=>'foo.ppm') or die $img->errstr;

PNM does not support the spatial resolution tags.

=head2 JPEG

You can supply a C<jpegquality> parameter (0-100) when writing a JPEG
file, which defaults to 75%.  Only 1 and 3 channel images
can be written, including 1 and 3 channel paletted images.

  $img->write(file=>'foo.jpg', jpegquality=>90) or die $img->errstr;

Imager will read a grayscale JPEG as a 1 channel image and a color
JPEG as a 3 channel image.

  $img->read(file=>'foo.jpg') or die $img->errstr;

The following tags are set in a JPEG image when read, and can be set
to control output:

=over

=item jpeg_density_unit

The value of the density unit field in the JFIF header.  This is
ignored on writing if the i_aspect_only tag is non-zero.

The C<i_xres> and C<i_yres> tags are expressed in pixels per inch no
matter the value of this tag, they will be converted to/from the value
stored in the JPEG file.

=item jpeg_density_unit_name

This is set when reading a JPEG file to the name of the unit given by
C<jpeg_density_unit>.  Possible results include C<inch>,
C<centimeter>, C<none> (the C<i_aspect_only> tag is also set reading
these files).  If the value of jpeg_density_unit is unknown then this
tag isn't set.

=item jpeg_comment

Text comment.

=back

JPEG supports the spatial resolution tags C<i_xres>, C<i_yres> and
C<i_aspect_only>.

If an APP1 block containing EXIF information is found, then any of the
following tags can be set:

=over

exif_aperture exif_artist exif_brightness exif_color_space
exif_contrast exif_copyright exif_custom_rendered exif_date_time
exif_date_time_digitized exif_date_time_original
exif_digital_zoom_ratio exif_exposure_bias exif_exposure_index
exif_exposure_mode exif_exposure_program exif_exposure_time
exif_f_number exif_flash exif_flash_energy exif_flashpix_version
exif_focal_length exif_focal_length_in_35mm_film
exif_focal_plane_resolution_unit exif_focal_plane_x_resolution
exif_focal_plane_y_resolution exif_gain_control exif_image_description
exif_image_unique_id exif_iso_speed_rating exif_make exif_max_aperture
exif_metering_mode exif_model exif_orientation exif_related_sound_file
exif_resolution_unit exif_saturation exif_scene_capture_type
exif_sensing_method exif_sharpness exif_shutter_speed exif_software
exif_spectral_sensitivity exif_sub_sec_time
exif_sub_sec_time_digitized exif_sub_sec_time_original
exif_subject_distance exif_subject_distance_range
exif_subject_location exif_tag_light_source exif_user_comment
exif_version exif_white_balance exif_x_resolution exif_y_resolution

=back

The following derived tags can also be set:

=over

exif_color_space_name exif_contrast_name exif_custom_rendered_name
exif_exposure_mode_name exif_exposure_program_name exif_flash_name
exif_focal_plane_resolution_unit_name exif_gain_control_name
exif_light_source_name exif_metering_mode_name
exif_resolution_unit_name exif_saturation_name
exif_scene_capture_type_name exif_sensing_method_name
exif_sharpness_name exif_subject_distance_range_name
exif_white_balance_name

=back

The derived tags are for enumerated fields, when the value for the
base field is valid then the text that appears in the EXIF
specification for that value appears in the derived field.  So for
example if C<exf_metering_mode> is C<5> then
C<exif_metering_mode_name> is set to C<Pattern>.

=head2 GIF (Graphics Interchange Format)

When writing one of more GIF images you can use the same
L<Quantization Options|Imager::ImageTypes> as you can when converting
an RGB image into a paletted image.

When reading a GIF all of the sub-images are combined using the screen
size and image positions into one big image, producing an RGB image.
This may change in the future to produce a paletted image where possible.

When you read a single GIF with C<$img-E<gt>read()> you can supply a
reference to a scalar in the C<colors> parameter, if the image is read
the scalar will be filled with a reference to an anonymous array of
L<Imager::Color> objects, representing the palette of the image.  This
will be the first palette found in the image.  If you want the
palettes for each of the images in the file, use C<read_multi()> and
use the C<getcolors()> method on each image.

GIF does not support the spatial resolution tags.

Imager will set the following tags in each image when reading, and can
use most of them when writing to GIF:

=over

=item gif_left

the offset of the image from the left of the "screen" ("Image Left
Position")

=item gif_top

the offset of the image from the top of the "screen" ("Image Top Position")

=item gif_interlace

non-zero if the image was interlaced ("Interlace Flag")

=item gif_screen_width

=item gif_screen_height

the size of the logical screen. When writing this is used as the
minimum.  If any image being written would extend beyond this the
screen size is extended.  ("Logical Screen Width", "Logical Screen
Height").

When writing this is used as a minimum, if the combination of the
image size and the image's C<gif_left> and C<gif_top> is beyond this
size then the screen size will be expanded.

=item gif_local_map

Non-zero if this image had a local color map.  If set for an image
when writing the image is quantized separately from the other images
in the file.

=item gif_background

The index in the global colormap of the logical screen's background
color.  This is only set if the current image uses the global
colormap.  You can set this on write too, but for it to choose the
color you want, you will need to supply only paletted images and set
the C<gif_eliminate_unused> tag to 0.

=item gif_trans_index

The index of the color in the colormap used for transparency.  If the
image has a transparency then it is returned as a 4 channel image with
the alpha set to zero in this palette entry.  This value is not used
when writing. ("Transparent Color Index")

=item gif_trans_color

A reference to an Imager::Color object, which is the colour to use for
the palette entry used to represent transparency in the palette.  You
need to set the transp option (see L<Quantization options>) for this
value to be used.

=item gif_delay

The delay until the next frame is displayed, in 1/100 of a second. 
("Delay Time").

=item gif_user_input

whether or not a user input is expected before continuing (view dependent) 
("User Input Flag").

=item gif_disposal

how the next frame is displayed ("Disposal Method")

=item gif_loop

the number of loops from the Netscape Loop extension.  This may be zero.

=item gif_comment

the first block of the first gif comment before each image.

=item gif_eliminate_unused

If this is true, when you write a paletted image any unused colors
will be eliminated from its palette.  This is set by default.

=back

Where applicable, the ("name") is the name of that field from the GIF89 
standard.

The following gif writing options are obsolete, you should set the
corresponding tag in the image, either by using the tags functions, or
by supplying the tag and value as options.

=over

=item gif_each_palette

Each image in the gif file has it's own palette if this is non-zero.
All but the first image has a local colour table (the first uses the
global colour table.

Use C<gif_local_map> in new code.

=item interlace

The images are written interlaced if this is non-zero.

Use C<gif_interlace> in new code.

=item gif_delays

A reference to an array containing the delays between images, in 1/100
seconds.

Use C<gif_delay> in new code.

=item gif_positions

A reference to an array of references to arrays which represent screen
positions for each image.

New code should use the C<gif_left> and C<gif_top> tags.

=item gif_loop_count

If this is non-zero the Netscape loop extension block is generated,
which makes the animation of the images repeat.

This is currently unimplemented due to some limitations in giflib.

=back

You can supply a C<page> parameter to the C<read()> method to read
some page other than the first.  The page is 0 based:

  # read the second image in the file
  $image->read(file=>"example.gif", page=>1)
    or die "Cannot read second page: ",$image->errstr,"\n";

Before release 0.46, Imager would read multi-image GIF image files
into a single image, overlaying each of the images onto the virtual
GIF screen.

As of 0.46 the default is to read the first image from the file, as if
called with C<< page => 0 >>.

You can return to the previous behaviour by calling read with the
C<gif_consolidate> parameter set to a true value:

  $img->read(file=>$some_gif_file, gif_consolidate=>1);

=head2 TIFF (Tagged Image File Format)

Imager can write images to either paletted or RGB TIFF images,
depending on the type of the source image.  Currently if you write a
16-bit/sample or double/sample image it will be written as an
8-bit/sample image.  Only 1 or 3 channel images can be written.

If you are creating images for faxing you can set the I<class>
parameter set to C<fax>.  By default the image is written in fine
mode, but this can be overridden by setting the I<fax_fine> parameter
to zero.  Since a fax image is bi-level, Imager uses a threshold to
decide if a given pixel is black or white, based on a single channel.
For greyscale images channel 0 is used, for color images channel 1
(green) is used.  If you want more control over the conversion you can
use $img->to_paletted() to product a bi-level image.  This way you can
use dithering:

  my $bilevel = $img->to_paletted(colors=>[ NC(0,0,0), NC(255,255,255) ],
                                  make_colors => 'none',
                                  translate => 'errdiff',
                                  errdiff => 'stucki');

=over

=item class

If set to 'fax' the image will be written as a bi-level fax image.

=item fax_fine

By default when I<class> is set to 'fax' the image is written in fine
mode, you can select normal mode by setting I<fax_fine> to 0.

=back

Imager should be able to read any TIFF image you supply.  Paletted
TIFF images are read as paletted Imager images, since paletted TIFF
images have 16-bits/sample (48-bits/color) this means the bottom
8-bits are lost, but this shouldn't be a big deal.  Currently all
direct color images are read at 8-bits/sample.

TIFF supports the spatial resolution tags.  See the
C<tiff_resolutionunit> tag for some extra options.

The following tags are set in a TIFF image when read, and can be set
to control output:

=over

=item tiff_resolutionunit

The value of the ResolutionUnit tag.  This is ignored on writing if
the i_aspect_only tag is non-zero.

The C<i_xres> and C<i_yres> tags are expressed in pixels per inch no
matter the value of this tag, they will be converted to/from the value
stored in the TIFF file.

=item tiff_resolutionunit_name

This is set when reading a TIFF file to the name of the unit given by
C<tiff_resolutionunit>.  Possible results include C<inch>,
C<centimeter>, C<none> (the C<i_aspect_only> tag is also set reading
these files) or C<unknown>.

=item tiff_bitspersample

Bits per sample from the image.  This value is not used when writing
an image, it is only set on a read image.

=item tiff_photometric

Value of the PhotometricInterpretation tag from the image.  This value
is not used when writing an image, it is only set on a read image.

=item tiff_documentname

=item tiff_imagedescription

=item tiff_make

=item tiff_model

=item tiff_pagename

=item tiff_software

=item tiff_datetime

=item tiff_artist

=item tiff_hostcomputer

Various strings describing the image.  tiff_datetime must be formatted
as "YYYY:MM:DD HH:MM:SS".  These correspond directly to the mixed case
names in the TIFF specification.  These are set in images read from a
TIFF and saved when writing a TIFF image.

You can supply a C<page> parameter to the C<read()> method to read
some page other than the first.  The page is 0 based:

  # read the second image in the file
  $image->read(file=>"example.tif", page=>1)
    or die "Cannot read second page: ",$image->errstr,"\n";

=back

=head2 BMP (BitMaP)

Imager can write 24-bit RGB, and 8, 4 and 1-bit per pixel paletted
Windows BMP files.  Currently you cannot write compressed BMP files
with Imager.

Imager can read 24-bit RGB, and 8, 4 and 1-bit perl pixel paletted
Windows BMP files.  There is some support for reading 16-bit per pixel
images, but I haven't found any for testing.

BMP has no support for multi-image files.

BMP files support the spatial resolution tags, but since BMP has no
support for storing only an aspect ratio, if C<i_aspect_only> is set
when you write the C<i_xres> and C<i_yres> values are scaled so the
smaller is 72 DPI.

The following tags are set when you read an image from a BMP file:

=over

=item bmp_compression

The type of compression, if any.  This can be any of the following
values:

=over

=item BI_RGB (0)

Uncompressed.

=item BI_RLE8 (1)

8-bits/pixel paletted value RLE compression.

=item BI_RLE4 (2)

4-bits/pixel paletted value RLE compression.

=item BI_BITFIELDS (3)

Packed RGB values.

=back

=item bmp_compression_name

The bmp_compression value as a BI_* string

=item bmp_important_colors

The number of important colors as defined by the writer of the image.

=item bmp_used_colors

Number of color used from the BMP header

=item bmp_filesize

The file size from the BMP header

=item bmp_bit_count

Number of bits stored per pixel. (24, 8, 4 or 1)

=back

=head2 TGA (TarGA)

When storing targa images rle compression can be activated with the
'compress' parameter, the 'idstring' parameter can be used to set the
targa comment field and the 'wierdpack' option can be used to use the
15 and 16 bit targa formats for rgb and rgba data.  The 15 bit format
has 5 of each red, green and blue.  The 16 bit format in addition
allows 1 bit of alpha.  The most significant bits are used for each
channel.


Tags:

=over

=item tga_idstring

=item tga_bitspp

=item compressed

=back

=head2 RAW

When reading raw images you need to supply the width and height of the
image in the xsize and ysize options:

  $img->read(file=>'foo.raw', xsize=>100, ysize=>100)
    or die "Cannot read raw image\n";

If your input file has more channels than you want, or (as is common),
junk in the fourth channel, you can use the datachannels and
storechannels options to control the number of channels in your input
file and the resulting channels in your image.  For example, if your
input image uses 32-bits per pixel with red, green, blue and junk
values for each pixel you could do:

  $img->read(file=>'foo.raw', xsize=>100, ysize=>100, datachannels=>4,
	     storechannels=>3)
    or die "Cannot read raw image\n";

Normally the raw image is expected to have the value for channel 1
immediately following channel 0 and channel 2 immediately following
channel 1 for each pixel.  If your input image has all the channel 0
values for the first line of the image, followed by all the channel 1
values for the first line and so on, you can use the interleave option:

  $img->read(file=>'foo.raw', xsize=100, ysize=>100, interleave=>1)
    or die "Cannot read raw image\n";

=head2 PNG

There are no PNG specific tags.

=head1 EXAMPLES

=head2 Producing an image from a CGI script

Once you have an image the basic mechanism is:

=over

=item 1.

set STDOUT to autoflush

=item 2.

output a content-type header, and optionally a content-length header

=item 3.

put STDOUT into binmode

=item 4.

call write() with the C<fd> or C<fh> parameter.  You will need to
provide the C<type> parameter since Imager can't use the extension to
guess the file format you want.

=back

  # write an image from a CGI script
  # using CGI.pm
  use CGI qw(:standard);
  $| = 1;
  binmode STDOUT;
  print header(-type=>'image/gif');
  $img->write(type=>'gif', fd=>fileno(STDOUT))
    or die $img->errstr;

If you want to send a content length you can send the output to a
scalar to get the length:

  my $data;
  $img->write(type=>'gif', data=>\$data)
    or die $img->errstr;
  binmode STDOUT;
  print header(-type=>'image/gif', -content_length=>length($data));
  print $data;

=head2 Writing an animated GIF

The basic idea is simple, just use write_multi():

  my @imgs = ...;
  Imager->write_multi({ file=>$filename, type=>'gif' }, @imgs);

If your images are RGB images the default quantization mechanism will
produce a very good result, but can take a long time to execute.  You
could either use the standard webmap:

  Imager->write_multi({ file=>$filename, 
                        type=>'gif',
                        make_colors=>'webmap' },
                      @imgs);

or use a median cut algorithm to built a fairly optimal color map:

  Imager->write_multi({ file=>$filename,
                        type=>'gif',
                        make_colors=>'mediancut' },
                      @imgs);

By default all of the images will use the same global colormap, which
will produce a smaller image.  If your images have significant color
differences, you may want to generate a new palette for each image:

  Imager->write_multi({ file=>$filename,
                        type=>'gif',
                        make_colors=>'mediancut',
                        gif_local_map => 1 },
                      @imgs);

which will set the C<gif_local_map> tag in each image to 1.
Alternatively, if you know only some images have different colors, you
can set the tag just for those images:

  $imgs[2]->settag(name=>'gif_local_map', value=>1);
  $imgs[4]->settag(name=>'gif_local_map', value=>1);

and call write_multi() without a C<gif_local_map> parameter, or supply
an arrayref of values for the tag:

  Imager->write_multi({ file=>$filename,
                        type=>'gif',
                        make_colors=>'mediancut',
                        gif_local_map => [ 0, 0, 1, 0, 1 ] },
                      @imgs);

Other useful parameters include C<gif_delay> to control the delay
between frames and C<transp> to control transparency.

=head2 Reading tags after reading an image

This is pretty simple:

  # print the author of a TIFF, if any
  my $img = Imager->new;
  $img->read(file=>$filename, type='tiff') or die $img->errstr;
  my $author = $img->tags(name=>'tiff_author');
  if (defined $author) {
    print "Author: $author\n";
  }

=head1 BUGS

When saving Gif images the program does NOT try to shave of extra
colors if it is possible.  If you specify 128 colors and there are
only 2 colors used - it will have a 128 colortable anyway.

=head1 SEE ALSO

Imager(3)

=cut