1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
|
#define IMAGER_NO_CONTEXT
#include "imager.h"
#include "imageri.h"
#include <stdlib.h>
#include <math.h>
/*
=head1 NAME
filters.im - implements filters that operate on images
=head1 SYNOPSIS
i_contrast(im, 0.8);
i_hardinvert(im);
i_hardinvertall(im);
i_unsharp_mask(im, 2.0, 1.0);
... and more
=head1 DESCRIPTION
filters.c implements basic filters for Imager. These filters
should be accessible from the filter interface as defined in
the pod for Imager.
=head1 FUNCTION REFERENCE
Some of these functions are internal.
=over
=cut
*/
/*
=item saturate(in)
Clamps the input value between 0 and 255. (internal)
in - input integer
=cut
*/
static
unsigned char
saturate(int in) {
if (in>255) { return 255; }
else if (in>0) return in;
return 0;
}
/*
=item i_contrast(im, intensity)
Scales the pixel values by the amount specified.
im - image object
intensity - scalefactor
=cut
*/
void
i_contrast(i_img *im, float intensity) {
i_img_dim x, y;
unsigned char ch;
unsigned int new_color;
i_color rcolor;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_contrast(im %p, intensity %f)\n", im, intensity));
if(intensity < 0) return;
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
i_gpix(im, x, y, &rcolor);
for(ch = 0; ch < im->channels; ch++) {
new_color = (unsigned int) rcolor.channel[ch];
new_color *= intensity;
if(new_color > 255) {
new_color = 255;
}
rcolor.channel[ch] = (unsigned char) new_color;
}
i_ppix(im, x, y, &rcolor);
}
}
static int
s_hardinvert_low(i_img *im, int all) {
i_img_dim x, y;
int ch;
int invert_channels = all ? im->channels : i_img_color_channels(im);
dIMCTXim(im);
im_log((aIMCTX,1,"i_hardinvert)low(im %p, all %d)\n", im, all));
#code im->bits <= 8
IM_COLOR *row, *entry;
/* always rooms to allocate a single line of i_color */
row = mymalloc(sizeof(IM_COLOR) * im->xsize); /* checked 17feb2005 tonyc */
for(y = 0; y < im->ysize; y++) {
IM_GLIN(im, 0, im->xsize, y, row);
entry = row;
for(x = 0; x < im->xsize; x++) {
for(ch = 0; ch < invert_channels; ch++) {
entry->channel[ch] = IM_SAMPLE_MAX - entry->channel[ch];
}
++entry;
}
IM_PLIN(im, 0, im->xsize, y, row);
}
myfree(row);
#/code
return 1;
}
/*
=item i_hardinvert(im)
Inverts the color channels of the input image.
im - image object
=cut
*/
void
i_hardinvert(i_img *im) {
s_hardinvert_low(im, 0);
}
/*
=item i_hardinvertall(im)
Inverts all channels of the input image.
im - image object
=cut
*/
void
i_hardinvertall(i_img *im) {
s_hardinvert_low(im, 1);
}
/*
=item i_noise(im, amount, type)
Adjusts the sample values randomly by the amount specified.
If type is 0, adjust all channels in a pixel by the same (random)
amount amount, if non-zero adjust each sample independently.
im - image object
amount - deviation in pixel values
type - noise individual for each channel if true
=cut
*/
#ifdef WIN32
/* random() is non-ASCII, even if it is better than rand() */
#define random() rand()
#endif
void
i_noise(i_img *im, float amount, unsigned char type) {
i_img_dim x, y;
unsigned char ch;
int new_color;
float damount = amount * 2;
i_color rcolor;
int color_inc = 0;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_noise(im %p, intensity %.2f\n", im, amount));
if(amount < 0) return;
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
i_gpix(im, x, y, &rcolor);
if(type == 0) {
color_inc = (amount - (damount * ((float)random() / RAND_MAX)));
}
for(ch = 0; ch < im->channels; ch++) {
new_color = (int) rcolor.channel[ch];
if(type != 0) {
new_color += (amount - (damount * ((float)random() / RAND_MAX)));
} else {
new_color += color_inc;
}
if(new_color < 0) {
new_color = 0;
}
if(new_color > 255) {
new_color = 255;
}
rcolor.channel[ch] = (unsigned char) new_color;
}
i_ppix(im, x, y, &rcolor);
}
}
/*
=item i_bumpmap(im, bump, channel, light_x, light_y, st)
Makes a bumpmap on image im using the bump image as the elevation map.
im - target image
bump - image that contains the elevation info
channel - to take the elevation information from
light_x - x coordinate of light source
light_y - y coordinate of light source
st - length of shadow
=cut
*/
void
i_bumpmap(i_img *im, i_img *bump, int channel, i_img_dim light_x, i_img_dim light_y, i_img_dim st) {
i_img_dim x, y;
int ch;
i_img_dim mx, my;
i_color x1_color, y1_color, x2_color, y2_color, dst_color;
double nX, nY;
double tX, tY, tZ;
double aX, aY, aL;
double fZ;
unsigned char px1, px2, py1, py2;
dIMCTXim(im);
i_img new_im;
im_log((aIMCTX, 1, "i_bumpmap(im %p, add_im %p, channel %d, light(" i_DFp "), st %" i_DF ")\n",
im, bump, channel, i_DFcp(light_x, light_y), i_DFc(st)));
if(channel >= bump->channels) {
im_log((aIMCTX, 1, "i_bumpmap: channel = %d while bump image only has %d channels\n", channel, bump->channels));
return;
}
mx = (bump->xsize <= im->xsize) ? bump->xsize : im->xsize;
my = (bump->ysize <= im->ysize) ? bump->ysize : im->ysize;
i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
aX = (light_x > (mx >> 1)) ? light_x : mx - light_x;
aY = (light_y > (my >> 1)) ? light_y : my - light_y;
aL = sqrt((aX * aX) + (aY * aY));
for(y = 1; y < my - 1; y++) {
for(x = 1; x < mx - 1; x++) {
i_gpix(bump, x + st, y, &x1_color);
i_gpix(bump, x, y + st, &y1_color);
i_gpix(bump, x - st, y, &x2_color);
i_gpix(bump, x, y - st, &y2_color);
i_gpix(im, x, y, &dst_color);
px1 = x1_color.channel[channel];
py1 = y1_color.channel[channel];
px2 = x2_color.channel[channel];
py2 = y2_color.channel[channel];
nX = px1 - px2;
nY = py1 - py2;
nX += 128;
nY += 128;
fZ = (sqrt((nX * nX) + (nY * nY)) / aL);
tX = i_abs(x - light_x) / aL;
tY = i_abs(y - light_y) / aL;
tZ = 1 - (sqrt((tX * tX) + (tY * tY)) * fZ);
if(tZ < 0) tZ = 0;
if(tZ > 2) tZ = 2;
for(ch = 0; ch < im->channels; ch++)
dst_color.channel[ch] = (unsigned char) (float)(dst_color.channel[ch] * tZ);
i_ppix(&new_im, x, y, &dst_color);
}
}
i_copyto(im, &new_im, 0, 0, im->xsize, im->ysize, 0, 0);
i_img_exorcise(&new_im);
}
typedef struct {
double x,y,z;
} fvec;
static
float
dotp(fvec *a, fvec *b) {
return a->x*b->x+a->y*b->y+a->z*b->z;
}
static
void
normalize(fvec *a) {
double d = sqrt(dotp(a,a));
a->x /= d;
a->y /= d;
a->z /= d;
}
/*
positive directions:
x - right,
y - down
z - out of the plane
I = Ia + Ip*( cd*Scol(N.L) + cs*(R.V)^n )
Here, the variables are:
* Ia - ambient colour
* Ip - intensity of the point light source
* cd - diffuse coefficient
* Scol - surface colour
* cs - specular coefficient
* n - objects shinyness
* N - normal vector
* L - lighting vector
* R - reflection vector
* V - vision vector
static void fvec_dump(fvec *x) {
printf("(%.2f %.2f %.2f)", x->x, x->y, x->z);
}
*/
/* XXX: Should these return a code for success? */
/*
=item i_bumpmap_complex(im, bump, channel, tx, ty, Lx, Ly, Lz, Ip, cd, cs, n, Ia, Il, Is)
Makes a bumpmap on image im using the bump image as the elevation map.
im - target image
bump - image that contains the elevation info
channel - to take the elevation information from
tx - shift in x direction of where to start applying bumpmap
ty - shift in y direction of where to start applying bumpmap
Lx - x position/direction of light
Ly - y position/direction of light
Lz - z position/direction of light
Ip - light intensity
cd - diffuse coefficient
cs - specular coefficient
n - surface shinyness
Ia - ambient colour
Il - light colour
Is - specular colour
if z<0 then the L is taken to be the direction the light is shining in. Otherwise
the L is taken to be the position of the Light, Relative to the image.
=cut
*/
void
i_bumpmap_complex(i_img *im,
i_img *bump,
int channel,
i_img_dim tx,
i_img_dim ty,
double Lx,
double Ly,
double Lz,
float cd,
float cs,
float n,
i_color *Ia,
i_color *Il,
i_color *Is) {
i_img new_im;
i_img_dim x, y;
int ch;
i_img_dim mx, Mx, my, My;
float cdc[MAXCHANNELS];
float csc[MAXCHANNELS];
i_color x1_color, y1_color, x2_color, y2_color;
i_color Scol; /* Surface colour */
fvec L; /* Light vector */
fvec N; /* surface normal */
fvec R; /* Reflection vector */
fvec V; /* Vision vector */
dIMCTXim(im);
im_log((aIMCTX, 1, "i_bumpmap_complex(im %p, bump %p, channel %d, t(" i_DFp
"), Lx %.2f, Ly %.2f, Lz %.2f, cd %.2f, cs %.2f, n %.2f, Ia %p, Il %p, Is %p)\n",
im, bump, channel, i_DFcp(tx, ty), Lx, Ly, Lz, cd, cs, n, Ia, Il, Is));
if (channel >= bump->channels) {
im_log((aIMCTX, 1, "i_bumpmap_complex: channel = %d while bump image only has %d channels\n", channel, bump->channels));
return;
}
for(ch=0; ch<im->channels; ch++) {
cdc[ch] = (float)Il->channel[ch]*cd/255.f;
csc[ch] = (float)Is->channel[ch]*cs/255.f;
}
mx = 1;
my = 1;
Mx = bump->xsize-1;
My = bump->ysize-1;
V.x = 0;
V.y = 0;
V.z = 1;
if (Lz < 0) { /* Light specifies a direction vector, reverse it to get the vector from surface to light */
L.x = -Lx;
L.y = -Ly;
L.z = -Lz;
normalize(&L);
} else { /* Light is the position of the light source */
L.x = -0.2;
L.y = -0.4;
L.z = 1;
normalize(&L);
}
i_img_empty_ch(&new_im, im->xsize, im->ysize, im->channels);
for(y = 0; y < im->ysize; y++) {
for(x = 0; x < im->xsize; x++) {
double dp1, dp2;
double dx = 0, dy = 0;
/* Calculate surface normal */
if (mx<x && x<Mx && my<y && y<My) {
i_gpix(bump, x + 1, y, &x1_color);
i_gpix(bump, x - 1, y, &x2_color);
i_gpix(bump, x, y + 1, &y1_color);
i_gpix(bump, x, y - 1, &y2_color);
dx = x2_color.channel[channel] - x1_color.channel[channel];
dy = y2_color.channel[channel] - y1_color.channel[channel];
} else {
dx = 0;
dy = 0;
}
N.x = -dx * 0.015;
N.y = -dy * 0.015;
N.z = 1;
normalize(&N);
/* Calculate Light vector if needed */
if (Lz>=0) {
L.x = Lx - x;
L.y = Ly - y;
L.z = Lz;
normalize(&L);
}
dp1 = dotp(&L,&N);
R.x = -L.x + 2*dp1*N.x;
R.y = -L.y + 2*dp1*N.y;
R.z = -L.z + 2*dp1*N.z;
dp2 = dotp(&R,&V);
dp1 = dp1<0 ?0 : dp1;
dp2 = pow(dp2<0 ?0 : dp2,n);
i_gpix(im, x, y, &Scol);
for(ch = 0; ch < im->channels; ch++)
Scol.channel[ch] =
saturate( Ia->channel[ch] + cdc[ch]*Scol.channel[ch]*dp1 + csc[ch]*dp2 );
i_ppix(&new_im, x, y, &Scol);
}
}
i_copyto(im, &new_im, 0, 0, im->xsize, im->ysize, 0, 0);
i_img_exorcise(&new_im);
}
/*
=item i_postlevels(im, levels)
Quantizes Images to fewer levels.
im - target image
levels - number of levels
=cut
*/
void
i_postlevels(i_img *im, int levels) {
i_img_dim x, y;
int ch;
float pv;
int rv;
float av;
i_color rcolor;
rv = (int) ((float)(256 / levels));
av = (float)levels;
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
i_gpix(im, x, y, &rcolor);
for(ch = 0; ch < im->channels; ch++) {
pv = (((float)rcolor.channel[ch] / 255)) * av;
pv = (int) ((int)pv * rv);
if(pv < 0) pv = 0;
else if(pv > 255) pv = 255;
rcolor.channel[ch] = (unsigned char) pv;
}
i_ppix(im, x, y, &rcolor);
}
}
/*
=item i_mosaic(im, size)
Makes an image looks like a mosaic with tilesize of size
im - target image
size - size of tiles
=cut
*/
void
i_mosaic(i_img *im, i_img_dim size) {
i_img_dim x, y;
int ch, z;
i_img_dim lx, ly;
long sqrsize;
i_color rcolor;
long col[256];
sqrsize = size * size;
for(y = 0; y < im->ysize; y += size) for(x = 0; x < im->xsize; x += size) {
for(z = 0; z < 256; z++) col[z] = 0;
for(lx = 0; lx < size; lx++) {
for(ly = 0; ly < size; ly++) {
i_gpix(im, (x + lx), (y + ly), &rcolor);
for(ch = 0; ch < im->channels; ch++) {
col[ch] += rcolor.channel[ch];
}
}
}
for(ch = 0; ch < im->channels; ch++)
rcolor.channel[ch] = (int) ((float)col[ch] / sqrsize);
for(lx = 0; lx < size; lx++)
for(ly = 0; ly < size; ly++)
i_ppix(im, (x + lx), (y + ly), &rcolor);
}
}
/*
=item i_watermark(im, wmark, tx, ty, pixdiff)
Applies a watermark to the target image
im - target image
wmark - watermark image
tx - x coordinate of where watermark should be applied
ty - y coordinate of where watermark should be applied
pixdiff - the magnitude of the watermark, controls how visible it is
=cut
*/
void
i_watermark(i_img *im, i_img *wmark, i_img_dim tx, i_img_dim ty, int pixdiff) {
i_img_dim vx, vy;
int ch;
i_color val, wval;
i_img_dim mx = wmark->xsize;
i_img_dim my = wmark->ysize;
for(vx=0;vx<mx;vx++) for(vy=0;vy<my;vy++) {
i_gpix(im, tx+vx, ty+vy,&val );
i_gpix(wmark, vx, vy, &wval);
for(ch=0;ch<im->channels;ch++)
val.channel[ch] = saturate( val.channel[ch] + (pixdiff* (wval.channel[0]-128) )/128 );
i_ppix(im,tx+vx,ty+vy,&val);
}
}
/*
=item i_autolevels_mono(im, lsat, usat)
Do autolevels, but monochromatically.
=cut
*/
void
i_autolevels_mono(i_img *im, float lsat, float usat) {
i_color val;
i_img_dim i, x, y, hist[256];
i_img_dim sum_lum, min_lum, max_lum;
i_img_dim upper_accum, lower_accum;
i_color *row;
dIMCTXim(im);
int adapt_channels = im->channels == 4 ? 2 : 1;
int color_channels = i_img_color_channels(im);
i_img_dim color_samples = im->xsize * color_channels;
im_log((aIMCTX, 1,"i_autolevels_mono(im %p, lsat %f,usat %f)\n", im, lsat,usat));
/* build the histogram in 8-bits, unless the image has a very small
range it should make little difference to the result */
sum_lum = 0;
for (i = 0; i < 256; i++)
hist[i] = 0;
row = mymalloc(im->xsize * sizeof(i_color));
/* create histogram for each channel */
for (y = 0; y < im->ysize; y++) {
i_color *p = row;
i_glin(im, 0, im->xsize, y, row);
if (im->channels > 2)
i_adapt_colors(adapt_channels, im->channels, row, im->xsize);
for (x = 0; x < im->xsize; x++) {
hist[p->channel[0]]++;
++p;
}
}
myfree(row);
for(i = 0; i < 256; i++) {
sum_lum += hist[i];
}
min_lum = 0;
lower_accum = 0;
for (i = 0; i < 256; ++i) {
if (lower_accum < sum_lum * lsat)
min_lum = i;
lower_accum += hist[i];
}
max_lum = 255;
upper_accum = 0;
for(i = 255; i >= 0; i--) {
if (upper_accum < sum_lum * usat)
max_lum = i;
upper_accum += hist[i];
}
#code im->bits <= 8
IM_SAMPLE_T *srow = mymalloc(color_samples * sizeof(IM_SAMPLE_T));
#ifdef IM_EIGHT_BIT
IM_WORK_T low = min_lum;
i_sample_t lookup[256];
#else
IM_WORK_T low = min_lum / 255.0 * IM_SAMPLE_MAX;
#endif
double scale = 255.0 / (max_lum - min_lum);
#ifdef IM_EIGHT_BIT
for (i = 0; i < 256; ++i) {
IM_WORK_T tmp = (i - low) * scale;
lookup[i] = IM_LIMIT(tmp);
}
#endif
for(y = 0; y < im->ysize; y++) {
IM_GSAMP(im, 0, im->xsize, y, srow, NULL, color_channels);
for(i = 0; i < color_samples; ++i) {
#ifdef IM_EIGHT_BIT
srow[i] = lookup[srow[i]];
#else
IM_WORK_T tmp = (srow[i] - low) * scale;
srow[i] = IM_LIMIT(tmp);
#endif
}
IM_PSAMP(im, 0, im->xsize, y, srow, NULL, color_channels);
}
myfree(srow);
#/code
}
/*
=item i_autolevels(im, lsat, usat, skew)
Scales and translates each color such that it fills the range completely.
Skew is not implemented yet - purpose is to control the color skew that can
occur when changing the contrast.
im - target image
lsat - fraction of pixels that will be truncated at the lower end of the spectrum
usat - fraction of pixels that will be truncated at the higher end of the spectrum
skew - not used yet
Note: this code calculates levels and adjusts each channel separately,
which will typically cause a color shift.
=cut
*/
void
i_autolevels(i_img *im, float lsat, float usat, float skew) {
i_color val;
i_img_dim i, x, y, rhist[256], ghist[256], bhist[256];
i_img_dim rsum, rmin, rmax;
i_img_dim gsum, gmin, gmax;
i_img_dim bsum, bmin, bmax;
i_img_dim rcl, rcu, gcl, gcu, bcl, bcu;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_autolevels(im %p, lsat %f,usat %f,skew %f)\n", im, lsat,usat,skew));
rsum=gsum=bsum=0;
for(i=0;i<256;i++) rhist[i]=ghist[i]=bhist[i] = 0;
/* create histogram for each channel */
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
i_gpix(im, x, y, &val);
rhist[val.channel[0]]++;
ghist[val.channel[1]]++;
bhist[val.channel[2]]++;
}
for(i=0;i<256;i++) {
rsum+=rhist[i];
gsum+=ghist[i];
bsum+=bhist[i];
}
rmin = gmin = bmin = 0;
rmax = gmax = bmax = 255;
rcu = rcl = gcu = gcl = bcu = bcl = 0;
for(i=0; i<256; i++) {
rcl += rhist[i]; if ( (rcl<rsum*lsat) ) rmin=i;
rcu += rhist[255-i]; if ( (rcu<rsum*usat) ) rmax=255-i;
gcl += ghist[i]; if ( (gcl<gsum*lsat) ) gmin=i;
gcu += ghist[255-i]; if ( (gcu<gsum*usat) ) gmax=255-i;
bcl += bhist[i]; if ( (bcl<bsum*lsat) ) bmin=i;
bcu += bhist[255-i]; if ( (bcu<bsum*usat) ) bmax=255-i;
}
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
i_gpix(im, x, y, &val);
val.channel[0]=saturate((val.channel[0]-rmin)*255/(rmax-rmin));
val.channel[1]=saturate((val.channel[1]-gmin)*255/(gmax-gmin));
val.channel[2]=saturate((val.channel[2]-bmin)*255/(bmax-bmin));
i_ppix(im, x, y, &val);
}
}
/*
=item Noise(x,y)
Pseudo noise utility function used to generate perlin noise. (internal)
x - x coordinate
y - y coordinate
=cut
*/
static
double
Noise(i_img_dim x, i_img_dim y) {
i_img_dim n = x + y * 57;
n = (n<<13) ^ n;
return ( 1.0 - ( (n * (n * n * 15731 + 789221) + 1376312589) & 0x7fffffff) / 1073741824.0);
}
/*
=item SmoothedNoise1(x,y)
Pseudo noise utility function used to generate perlin noise. (internal)
x - x coordinate
y - y coordinate
=cut
*/
static
double
SmoothedNoise1(double x, double y) {
double corners = ( Noise(x-1, y-1)+Noise(x+1, y-1)+Noise(x-1, y+1)+Noise(x+1, y+1) ) / 16;
double sides = ( Noise(x-1, y) +Noise(x+1, y) +Noise(x, y-1) +Noise(x, y+1) ) / 8;
double center = Noise(x, y) / 4;
return corners + sides + center;
}
/*
=item G_Interpolate(a, b, x)
Utility function used to generate perlin noise. (internal)
=cut
*/
static
double
C_Interpolate(double a, double b, double x) {
/* float ft = x * 3.1415927; */
double ft = x * PI;
double f = (1 - cos(ft)) * .5;
return a*(1-f) + b*f;
}
/*
=item InterpolatedNoise(x, y)
Utility function used to generate perlin noise. (internal)
=cut
*/
static
double
InterpolatedNoise(double x, double y) {
i_img_dim integer_X = x;
double fractional_X = x - integer_X;
i_img_dim integer_Y = y;
double fractional_Y = y - integer_Y;
double v1 = SmoothedNoise1(integer_X, integer_Y);
double v2 = SmoothedNoise1(integer_X + 1, integer_Y);
double v3 = SmoothedNoise1(integer_X, integer_Y + 1);
double v4 = SmoothedNoise1(integer_X + 1, integer_Y + 1);
double i1 = C_Interpolate(v1 , v2 , fractional_X);
double i2 = C_Interpolate(v3 , v4 , fractional_X);
return C_Interpolate(i1 , i2 , fractional_Y);
}
/*
=item PerlinNoise_2D(x, y)
Utility function used to generate perlin noise. (internal)
=cut
*/
static
float
PerlinNoise_2D(float x, float y) {
int i,frequency;
double amplitude;
double total = 0;
int Number_Of_Octaves=6;
int n = Number_Of_Octaves - 1;
for(i=0;i<n;i++) {
frequency = 2*i;
amplitude = PI;
total = total + InterpolatedNoise(x * frequency, y * frequency) * amplitude;
}
return total;
}
/*
=item i_radnoise(im, xo, yo, rscale, ascale)
Perlin-like radial noise.
im - target image
xo - x coordinate of center
yo - y coordinate of center
rscale - radial scale
ascale - angular scale
=cut
*/
void
i_radnoise(i_img *im, i_img_dim xo, i_img_dim yo, double rscale, double ascale) {
i_img_dim x, y;
int ch;
i_color val;
unsigned char v;
double xc, yc, r;
double a;
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
xc = (double)x-xo+0.5;
yc = (double)y-yo+0.5;
r = rscale*sqrt(xc*xc+yc*yc)+1.2;
a = (PI+atan2(yc,xc))*ascale;
v = saturate(128+100*(PerlinNoise_2D(a,r)));
/* v=saturate(120+12*PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale)); Good soft marble */
for(ch=0; ch<im->channels; ch++) val.channel[ch]=v;
i_ppix(im, x, y, &val);
}
}
/*
=item i_turbnoise(im, xo, yo, scale)
Perlin-like 2d noise noise.
im - target image
xo - x coordinate translation
yo - y coordinate translation
scale - scale of noise
=cut
*/
void
i_turbnoise(i_img *im, double xo, double yo, double scale) {
i_img_dim x,y;
int ch;
unsigned char v;
i_color val;
for(y = 0; y < im->ysize; y++) for(x = 0; x < im->xsize; x++) {
/* v=saturate(125*(1.0+PerlinNoise_2D(xo+(float)x/scale,yo+(float)y/scale))); */
v = saturate(120*(1.0+sin(xo+(double)x/scale+PerlinNoise_2D(xo+(double)x/scale,yo+(float)y/scale))));
for(ch=0; ch<im->channels; ch++) val.channel[ch] = v;
i_ppix(im, x, y, &val);
}
}
/*
=item i_gradgen(im, num, xo, yo, ival, dmeasure)
Gradient generating function.
im - target image
num - number of points given
xo - array of x coordinates
yo - array of y coordinates
ival - array of i_color objects
dmeasure - distance measure to be used.
0 = Euclidean
1 = Euclidean squared
2 = Manhattan distance
=cut
*/
void
i_gradgen(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *ival, int dmeasure) {
i_color val;
int p, ch;
i_img_dim x, y;
int channels = im->channels;
i_img_dim xsize = im->xsize;
i_img_dim ysize = im->ysize;
size_t bytes;
double *fdist;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
for(p = 0; p<num; p++) {
im_log((aIMCTX,1,"i_gradgen: p%d(" i_DFp ")\n", p, i_DFcp(xo[p], yo[p])));
ICL_info(&ival[p]);
}
/* on the systems I have sizeof(float) == sizeof(int) and thus
this would be same size as the arrays xo and yo point at, but this
may not be true for other systems
since the arrays here are caller controlled, I assume that on
overflow is a programming error rather than an end-user error, so
calling exit() is justified.
*/
bytes = sizeof(double) * num;
if (bytes / num != sizeof(double)) {
fprintf(stderr, "integer overflow calculating memory allocation");
exit(1);
}
fdist = mymalloc( bytes ); /* checked 14jul05 tonyc */
for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
double cs = 0;
double csd = 0;
for(p = 0; p<num; p++) {
i_img_dim xd = x-xo[p];
i_img_dim yd = y-yo[p];
switch (dmeasure) {
case 0: /* euclidean */
fdist[p] = sqrt(xd*xd + yd*yd); /* euclidean distance */
break;
case 1: /* euclidean squared */
fdist[p] = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
fdist[p] = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
im_fatal(aIMCTX, 3,"i_gradgen: Unknown distance measure\n");
}
cs += fdist[p];
}
csd = 1/((num-1)*cs);
for(p = 0; p<num; p++) fdist[p] = (cs-fdist[p])*csd;
for(ch = 0; ch<channels; ch++) {
int tres = 0;
for(p = 0; p<num; p++) tres += ival[p].channel[ch] * fdist[p];
val.channel[ch] = saturate(tres);
}
i_ppix(im, x, y, &val);
}
myfree(fdist);
}
void
i_nearest_color_foo(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *ival, int dmeasure) {
int p;
i_img_dim x, y;
i_img_dim xsize = im->xsize;
i_img_dim ysize = im->ysize;
dIMCTXim(im);
im_log((aIMCTX,1,"i_gradgen(im %p, num %d, xo %p, yo %p, ival %p, dmeasure %d)\n", im, num, xo, yo, ival, dmeasure));
for(p = 0; p<num; p++) {
im_log((aIMCTX, 1,"i_gradgen: p%d(" i_DFp ")\n", p, i_DFcp(xo[p], yo[p])));
ICL_info(&ival[p]);
}
for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
int midx = 0;
double mindist = 0;
double curdist = 0;
i_img_dim xd = x-xo[0];
i_img_dim yd = y-yo[0];
switch (dmeasure) {
case 0: /* euclidean */
mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
break;
case 1: /* euclidean squared */
mindist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
im_fatal(aIMCTX, 3,"i_nearest_color: Unknown distance measure\n");
}
for(p = 1; p<num; p++) {
xd = x-xo[p];
yd = y-yo[p];
switch (dmeasure) {
case 0: /* euclidean */
curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
break;
case 1: /* euclidean squared */
curdist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
im_fatal(aIMCTX, 3,"i_nearest_color: Unknown distance measure\n");
}
if (curdist < mindist) {
mindist = curdist;
midx = p;
}
}
i_ppix(im, x, y, &ival[midx]);
}
}
/*
=item i_nearest_color(im, num, xo, yo, oval, dmeasure)
This wasn't document - quoth Addi:
An arty type of filter
FIXME: check IRC logs for actual text.
Inputs:
=over
=item *
i_img *im - image to render on.
=item *
int num - number of points/colors in xo, yo, oval
=item *
i_img_dim *xo - array of I<num> x positions
=item *
i_img_dim *yo - array of I<num> y positions
=item *
i_color *oval - array of I<num> colors
xo, yo, oval correspond to each other, the point xo[i], yo[i] has a
color something like oval[i], at least closer to that color than other
points.
=item *
int dmeasure - how we measure the distance from some point P(x,y) to
any (xo[i], yo[i]).
Valid values are:
=over
=item 0
euclidean distance: sqrt((x2-x1)**2 + (y2-y1)**2)
=item 1
square of euclidean distance: ((x2-x1)**2 + (y2-y1)**2)
=item 2
manhattan distance: max((y2-y1)**2, (x2-x1)**2)
=back
An invalid value causes an error exit (the program is aborted).
=back
=cut
*/
int
i_nearest_color(i_img *im, int num, i_img_dim *xo, i_img_dim *yo, i_color *oval, int dmeasure) {
i_color *ival;
float *tval;
double c1, c2;
i_color val;
int p, ch;
i_img_dim x, y;
i_img_dim xsize = im->xsize;
i_img_dim ysize = im->ysize;
int *cmatch;
size_t ival_bytes, tval_bytes;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_nearest_color(im %p, num %d, xo %p, yo %p, oval %p, dmeasure %d)\n", im, num, xo, yo, oval, dmeasure));
i_clear_error();
if (num <= 0) {
i_push_error(0, "no points supplied to nearest_color filter");
return 0;
}
if (dmeasure < 0 || dmeasure > i_dmeasure_limit) {
i_push_error(0, "distance measure invalid");
return 0;
}
tval_bytes = sizeof(float)*num*im->channels;
if (tval_bytes / num != sizeof(float) * im->channels) {
i_push_error(0, "integer overflow calculating memory allocation");
return 0;
}
ival_bytes = sizeof(i_color) * num;
if (ival_bytes / sizeof(i_color) != num) {
i_push_error(0, "integer overflow calculating memory allocation");
return 0;
}
tval = mymalloc( tval_bytes ); /* checked 17feb2005 tonyc */
ival = mymalloc( ival_bytes ); /* checked 17feb2005 tonyc */
cmatch = mymalloc( sizeof(int)*num ); /* checked 17feb2005 tonyc */
for(p = 0; p<num; p++) {
for(ch = 0; ch<im->channels; ch++) tval[ p * im->channels + ch] = 0;
cmatch[p] = 0;
}
for(y = 0; y<ysize; y++) for(x = 0; x<xsize; x++) {
int midx = 0;
double mindist = 0;
double curdist = 0;
i_img_dim xd = x-xo[0];
i_img_dim yd = y-yo[0];
switch (dmeasure) {
case 0: /* euclidean */
mindist = sqrt(xd*xd + yd*yd); /* euclidean distance */
break;
case 1: /* euclidean squared */
mindist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* manhatten distance */
mindist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
im_fatal(aIMCTX, 3,"i_nearest_color: Unknown distance measure\n");
}
for(p = 1; p<num; p++) {
xd = x-xo[p];
yd = y-yo[p];
switch (dmeasure) {
case 0: /* euclidean */
curdist = sqrt(xd*xd + yd*yd); /* euclidean distance */
break;
case 1: /* euclidean squared */
curdist = xd*xd + yd*yd; /* euclidean distance */
break;
case 2: /* euclidean squared */
curdist = i_max(xd*xd, yd*yd); /* manhattan distance */
break;
default:
im_fatal(aIMCTX, 3,"i_nearest_color: Unknown distance measure\n");
}
if (curdist < mindist) {
mindist = curdist;
midx = p;
}
}
cmatch[midx]++;
i_gpix(im, x, y, &val);
c2 = 1.0/(float)(cmatch[midx]);
c1 = 1.0-c2;
for(ch = 0; ch<im->channels; ch++)
tval[midx*im->channels + ch] =
c1*tval[midx*im->channels + ch] + c2 * (float) val.channel[ch];
}
for(p = 0; p<num; p++) {
for(ch = 0; ch<im->channels; ch++)
ival[p].channel[ch] = tval[p*im->channels + ch];
/* avoid uninitialized value messages from valgrind */
while (ch < MAXCHANNELS)
ival[p].channel[ch++] = 0;
}
i_nearest_color_foo(im, num, xo, yo, ival, dmeasure);
myfree(cmatch);
myfree(ival);
myfree(tval);
return 1;
}
/*
=item i_unsharp_mask(im, stddev, scale)
Perform an usharp mask, which is defined as subtracting the blurred
image from double the original.
=cut
*/
void
i_unsharp_mask(i_img *im, double stddev, double scale) {
i_img *copy;
i_img_dim x, y;
int ch;
if (scale < 0)
return;
/* it really shouldn't ever be more than 1.0, but maybe ... */
if (scale > 100)
scale = 100;
copy = i_copy(im);
i_gaussian(copy, stddev);
if (im->bits == i_8_bits) {
i_color *blur = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
i_color *out = mymalloc(im->xsize * sizeof(i_color)); /* checked 17feb2005 tonyc */
for (y = 0; y < im->ysize; ++y) {
i_glin(copy, 0, copy->xsize, y, blur);
i_glin(im, 0, im->xsize, y, out);
for (x = 0; x < im->xsize; ++x) {
for (ch = 0; ch < im->channels; ++ch) {
/*int temp = out[x].channel[ch] +
scale * (out[x].channel[ch] - blur[x].channel[ch]);*/
int temp = out[x].channel[ch] * 2 - blur[x].channel[ch];
if (temp < 0)
temp = 0;
else if (temp > 255)
temp = 255;
out[x].channel[ch] = temp;
}
}
i_plin(im, 0, im->xsize, y, out);
}
myfree(blur);
myfree(out);
}
else {
i_fcolor *blur = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
i_fcolor *out = mymalloc(im->xsize * sizeof(i_fcolor)); /* checked 17feb2005 tonyc */
for (y = 0; y < im->ysize; ++y) {
i_glinf(copy, 0, copy->xsize, y, blur);
i_glinf(im, 0, im->xsize, y, out);
for (x = 0; x < im->xsize; ++x) {
for (ch = 0; ch < im->channels; ++ch) {
double temp = out[x].channel[ch] +
scale * (out[x].channel[ch] - blur[x].channel[ch]);
if (temp < 0)
temp = 0;
else if (temp > 1.0)
temp = 1.0;
out[x].channel[ch] = temp;
}
}
i_plinf(im, 0, im->xsize, y, out);
}
myfree(blur);
myfree(out);
}
i_img_destroy(copy);
}
/*
=item i_diff_image(im1, im2, mindist)
Creates a new image that is transparent, except where the pixel in im2
is different from im1, where it is the pixel from im2.
The samples must differ by at least mindiff to be considered different.
=cut
*/
i_img *
i_diff_image(i_img *im1, i_img *im2, double mindist) {
i_img *out;
int outchans, diffchans;
i_img_dim xsize, ysize;
dIMCTXim(im1);
i_clear_error();
if (im1->channels != im2->channels) {
i_push_error(0, "different number of channels");
return NULL;
}
outchans = diffchans = im1->channels;
if (outchans == 1 || outchans == 3)
++outchans;
xsize = i_min(im1->xsize, im2->xsize);
ysize = i_min(im1->ysize, im2->ysize);
out = i_sametype_chans(im1, xsize, ysize, outchans);
if (im1->bits == i_8_bits && im2->bits == i_8_bits) {
i_color *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
i_color *line2 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
i_color empty;
i_img_dim x, y;
int ch;
int imindist = (int)mindist;
for (ch = 0; ch < MAXCHANNELS; ++ch)
empty.channel[ch] = 0;
for (y = 0; y < ysize; ++y) {
i_glin(im1, 0, xsize, y, line1);
i_glin(im2, 0, xsize, y, line2);
if (outchans != diffchans) {
/* give the output an alpha channel since it doesn't have one */
for (x = 0; x < xsize; ++x)
line2[x].channel[diffchans] = 255;
}
for (x = 0; x < xsize; ++x) {
int diff = 0;
for (ch = 0; ch < diffchans; ++ch) {
if (line1[x].channel[ch] != line2[x].channel[ch]
&& abs(line1[x].channel[ch] - line2[x].channel[ch]) > imindist) {
diff = 1;
break;
}
}
if (!diff)
line2[x] = empty;
}
i_plin(out, 0, xsize, y, line2);
}
myfree(line1);
myfree(line2);
}
else {
i_fcolor *line1 = mymalloc(xsize * sizeof(*line1)); /* checked 17feb2005 tonyc */
i_fcolor *line2 = mymalloc(xsize * sizeof(*line2)); /* checked 17feb2005 tonyc */
i_fcolor empty;
i_img_dim x, y;
int ch;
double dist = mindist / 255.0;
for (ch = 0; ch < MAXCHANNELS; ++ch)
empty.channel[ch] = 0;
for (y = 0; y < ysize; ++y) {
i_glinf(im1, 0, xsize, y, line1);
i_glinf(im2, 0, xsize, y, line2);
if (outchans != diffchans) {
/* give the output an alpha channel since it doesn't have one */
for (x = 0; x < xsize; ++x)
line2[x].channel[diffchans] = 1.0;
}
for (x = 0; x < xsize; ++x) {
int diff = 0;
for (ch = 0; ch < diffchans; ++ch) {
if (line1[x].channel[ch] != line2[x].channel[ch]
&& fabs(line1[x].channel[ch] - line2[x].channel[ch]) > dist) {
diff = 1;
break;
}
}
if (!diff)
line2[x] = empty;
}
i_plinf(out, 0, xsize, y, line2);
}
myfree(line1);
myfree(line2);
}
return out;
}
struct fount_state;
static double linear_fount_f(double x, double y, struct fount_state *state);
static double bilinear_fount_f(double x, double y, struct fount_state *state);
static double radial_fount_f(double x, double y, struct fount_state *state);
static double square_fount_f(double x, double y, struct fount_state *state);
static double revolution_fount_f(double x, double y,
struct fount_state *state);
static double conical_fount_f(double x, double y, struct fount_state *state);
typedef double (*fount_func)(double, double, struct fount_state *);
static fount_func fount_funcs[] =
{
linear_fount_f,
bilinear_fount_f,
radial_fount_f,
square_fount_f,
revolution_fount_f,
conical_fount_f,
};
static double linear_interp(double pos, i_fountain_seg *seg);
static double sine_interp(double pos, i_fountain_seg *seg);
static double sphereup_interp(double pos, i_fountain_seg *seg);
static double spheredown_interp(double pos, i_fountain_seg *seg);
typedef double (*fount_interp)(double pos, i_fountain_seg *seg);
static fount_interp fount_interps[] =
{
linear_interp,
linear_interp,
sine_interp,
sphereup_interp,
spheredown_interp,
};
static void direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
static void hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
static void hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg);
typedef void (*fount_cinterp)(i_fcolor *out, double pos, i_fountain_seg *seg);
static fount_cinterp fount_cinterps[] =
{
direct_cinterp,
hue_up_cinterp,
hue_down_cinterp,
};
typedef double (*fount_repeat)(double v);
static double fount_r_none(double v);
static double fount_r_sawtooth(double v);
static double fount_r_triangle(double v);
static double fount_r_saw_both(double v);
static double fount_r_tri_both(double v);
static fount_repeat fount_repeats[] =
{
fount_r_none,
fount_r_sawtooth,
fount_r_triangle,
fount_r_saw_both,
fount_r_tri_both,
};
static int simple_ssample(i_fcolor *out, double x, double y,
struct fount_state *state);
static int random_ssample(i_fcolor *out, double x, double y,
struct fount_state *state);
static int circle_ssample(i_fcolor *out, double x, double y,
struct fount_state *state);
typedef int (*fount_ssample)(i_fcolor *out, double x, double y,
struct fount_state *state);
static fount_ssample fount_ssamples[] =
{
NULL,
simple_ssample,
random_ssample,
circle_ssample,
};
static int
fount_getat(i_fcolor *out, double x, double y, struct fount_state *state);
/*
Keep state information used by each type of fountain fill
*/
struct fount_state {
/* precalculated for the equation of the line perpendicular to the line AB */
double lA, lB, lC;
double AB;
double sqrtA2B2;
double mult;
double cos;
double sin;
double theta;
i_img_dim xa, ya;
void *ssample_data;
fount_func ffunc;
fount_repeat rpfunc;
fount_ssample ssfunc;
double parm;
i_fountain_seg *segs;
int count;
};
static void
fount_init_state(struct fount_state *state, double xa, double ya,
double xb, double yb, i_fountain_type type,
i_fountain_repeat repeat, int combine, int super_sample,
double ssample_param, int count, i_fountain_seg *segs);
static void
fount_finish_state(struct fount_state *state);
#define EPSILON (1e-6)
/*
=item i_fountain(im, xa, ya, xb, yb, type, repeat, combine, super_sample, ssample_param, count, segs)
Draws a fountain fill using A(xa, ya) and B(xb, yb) as reference points.
I<type> controls how the reference points are used:
=over
=item i_ft_linear
linear, where A is 0 and B is 1.
=item i_ft_bilinear
linear in both directions from A.
=item i_ft_radial
circular, where A is the centre of the fill, and B is a point
on the radius.
=item i_ft_radial_square
where A is the centre of the fill and B is the centre of
one side of the square.
=item i_ft_revolution
where A is the centre of the fill and B defines the 0/1.0
angle of the fill.
=item i_ft_conical
similar to i_ft_revolution, except that the revolution goes in both
directions
=back
I<repeat> can be one of:
=over
=item i_fr_none
values < 0 are treated as zero, values > 1 are treated as 1.
=item i_fr_sawtooth
negative values are treated as 0, positive values are modulo 1.0
=item i_fr_triangle
negative values are treated as zero, if (int)value is odd then the value is treated as 1-(value
mod 1.0), otherwise the same as for sawtooth.
=item i_fr_saw_both
like i_fr_sawtooth, except that the sawtooth pattern repeats into
negative values.
=item i_fr_tri_both
Like i_fr_triangle, except that negative values are handled as their
absolute values.
=back
If combine is non-zero then non-opaque values are combined with the
underlying color.
I<super_sample> controls super sampling, if any. At some point I'll
probably add a adaptive super-sampler. Current possible values are:
=over
=item i_fts_none
No super-sampling is done.
=item i_fts_grid
A square grid of points withing the pixel are sampled.
=item i_fts_random
Random points within the pixel are sampled.
=item i_fts_circle
Points on the radius of a circle are sampled. This produces fairly
good results, but is fairly slow since sin() and cos() are evaluated
for each point.
=back
I<ssample_param> is intended to be roughly the number of points
sampled within the pixel.
I<count> and I<segs> define the segments of the fill.
=cut
*/
int
i_fountain(i_img *im, double xa, double ya, double xb, double yb,
i_fountain_type type, i_fountain_repeat repeat,
int combine, int super_sample, double ssample_param,
int count, i_fountain_seg *segs) {
struct fount_state state;
i_img_dim x, y;
i_fcolor *line = NULL;
i_fcolor *work = NULL;
size_t line_bytes;
i_fill_combine_f combine_func = NULL;
i_fill_combinef_f combinef_func = NULL;
dIMCTXim(im);
i_clear_error();
/* i_fountain() allocates floating colors even for 8-bit images,
so we need to do this check */
line_bytes = sizeof(i_fcolor) * im->xsize;
if (line_bytes / sizeof(i_fcolor) != im->xsize) {
i_push_error(0, "integer overflow calculating memory allocation");
return 0;
}
line = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
i_get_combine(combine, &combine_func, &combinef_func);
if (combinef_func)
work = mymalloc(line_bytes); /* checked 17feb2005 tonyc */
fount_init_state(&state, xa, ya, xb, yb, type, repeat, combine,
super_sample, ssample_param, count, segs);
for (y = 0; y < im->ysize; ++y) {
i_glinf(im, 0, im->xsize, y, line);
for (x = 0; x < im->xsize; ++x) {
i_fcolor c;
int got_one;
if (super_sample == i_fts_none)
got_one = fount_getat(&c, x, y, &state);
else
got_one = state.ssfunc(&c, x, y, &state);
if (got_one) {
if (combine)
work[x] = c;
else
line[x] = c;
}
}
if (combine)
combinef_func(line, work, im->channels, im->xsize);
i_plinf(im, 0, im->xsize, y, line);
}
fount_finish_state(&state);
if (work) myfree(work);
myfree(line);
return 1;
}
typedef struct {
i_fill_t base;
struct fount_state state;
} i_fill_fountain_t;
static void
fill_fountf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width, int channels,
i_fcolor *data);
static void
fount_fill_destroy(i_fill_t *fill);
static i_fill_fountain_t
fount_fill_proto =
{
{
NULL,
fill_fountf,
fount_fill_destroy
}
};
/*
=item i_new_fill_fount(C<xa>, C<ya>, C<xb>, C<yb>, C<type>, C<repeat>, C<combine>, C<super_sample>, C<ssample_param>, C<count>, C<segs>)
=category Fills
=synopsis fill = i_new_fill_fount(0, 0, 100, 100, i_ft_linear, i_ft_linear,
=synopsis i_fr_triangle, 0, i_fts_grid, 9, 1, segs);
Creates a new general fill which fills with a fountain fill.
=cut
*/
i_fill_t *
i_new_fill_fount(double xa, double ya, double xb, double yb,
i_fountain_type type, i_fountain_repeat repeat,
int combine, int super_sample, double ssample_param,
int count, i_fountain_seg *segs) {
i_fill_fountain_t *fill = mymalloc(sizeof(i_fill_fountain_t));
*fill = fount_fill_proto;
if (combine)
i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
else {
fill->base.combine = NULL;
fill->base.combinef = NULL;
}
fount_init_state(&fill->state, xa, ya, xb, yb, type, repeat, combine,
super_sample, ssample_param, count, segs);
return &fill->base;
}
/*
=back
=head1 INTERNAL FUNCTIONS
=over
=item fount_init_state(...)
Used by both the fountain fill filter and the fountain fill.
=cut
*/
static void
fount_init_state(struct fount_state *state, double xa, double ya,
double xb, double yb, i_fountain_type type,
i_fountain_repeat repeat, int combine, int super_sample,
double ssample_param, int count, i_fountain_seg *segs) {
int i, j;
size_t bytes;
i_fountain_seg *my_segs = mymalloc(sizeof(i_fountain_seg) * count); /* checked 2jul06 - duplicating original */
/*int have_alpha = im->channels == 2 || im->channels == 4;*/
memset(state, 0, sizeof(*state));
/* we keep a local copy that we can adjust for speed */
for (i = 0; i < count; ++i) {
i_fountain_seg *seg = my_segs + i;
*seg = segs[i];
if (seg->type < 0 || seg->type >= i_fst_end)
seg->type = i_fst_linear;
if (seg->color < 0 || seg->color >= i_fc_end)
seg->color = i_fc_direct;
if (seg->color == i_fc_hue_up || seg->color == i_fc_hue_down) {
/* so we don't have to translate to HSV on each request, do it here */
for (j = 0; j < 2; ++j) {
i_rgb_to_hsvf(seg->c+j);
}
if (seg->color == i_fc_hue_up) {
if (seg->c[1].channel[0] <= seg->c[0].channel[0])
seg->c[1].channel[0] += 1.0;
}
else {
if (seg->c[0].channel[0] <= seg->c[0].channel[1])
seg->c[0].channel[0] += 1.0;
}
}
/*printf("start %g mid %g end %g c0(%g,%g,%g,%g) c1(%g,%g,%g,%g) type %d color %d\n",
seg->start, seg->middle, seg->end, seg->c[0].channel[0],
seg->c[0].channel[1], seg->c[0].channel[2], seg->c[0].channel[3],
seg->c[1].channel[0], seg->c[1].channel[1], seg->c[1].channel[2],
seg->c[1].channel[3], seg->type, seg->color);*/
}
/* initialize each engine */
/* these are so common ... */
state->lA = xb - xa;
state->lB = yb - ya;
state->AB = sqrt(state->lA * state->lA + state->lB * state->lB);
state->xa = xa;
state->ya = ya;
switch (type) {
default:
type = i_ft_linear; /* make the invalid value valid */
case i_ft_linear:
case i_ft_bilinear:
state->lC = ya * ya - ya * yb + xa * xa - xa * xb;
state->mult = 1;
state->mult = 1/linear_fount_f(xb, yb, state);
break;
case i_ft_radial:
state->mult = 1.0 / sqrt((double)(xb-xa)*(xb-xa)
+ (double)(yb-ya)*(yb-ya));
break;
case i_ft_radial_square:
state->cos = state->lA / state->AB;
state->sin = state->lB / state->AB;
state->mult = 1.0 / state->AB;
break;
case i_ft_revolution:
state->theta = atan2(yb-ya, xb-xa);
state->mult = 1.0 / (PI * 2);
break;
case i_ft_conical:
state->theta = atan2(yb-ya, xb-xa);
state->mult = 1.0 / PI;
break;
}
state->ffunc = fount_funcs[type];
if (super_sample < 0
|| super_sample >= (int)(sizeof(fount_ssamples)/sizeof(*fount_ssamples))) {
super_sample = 0;
}
state->ssample_data = NULL;
switch (super_sample) {
case i_fts_grid:
ssample_param = floor(0.5 + sqrt(ssample_param));
bytes = ssample_param * ssample_param * sizeof(i_fcolor);
if (bytes / sizeof(i_fcolor) == ssample_param * ssample_param) {
state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param * ssample_param); /* checked 1jul06 tonyc */
}
else {
super_sample = i_fts_none;
}
break;
case i_fts_random:
case i_fts_circle:
ssample_param = floor(0.5+ssample_param);
bytes = sizeof(i_fcolor) * ssample_param;
if (bytes / sizeof(i_fcolor) == ssample_param) {
state->ssample_data = mymalloc(sizeof(i_fcolor) * ssample_param);
}
else {
super_sample = i_fts_none;
}
break;
}
state->parm = ssample_param;
state->ssfunc = fount_ssamples[super_sample];
if (repeat < 0 || repeat >= (sizeof(fount_repeats)/sizeof(*fount_repeats)))
repeat = 0;
state->rpfunc = fount_repeats[repeat];
state->segs = my_segs;
state->count = count;
}
static void
fount_finish_state(struct fount_state *state) {
if (state->ssample_data)
myfree(state->ssample_data);
myfree(state->segs);
}
/*
=item fount_getat(out, x, y, ffunc, rpfunc, state, segs, count)
Evaluates the fountain fill at the given point.
This is called by both the non-super-sampling and super-sampling code.
You might think that it would make sense to sample the fill parameter
instead, and combine those, but this breaks badly.
=cut
*/
static int
fount_getat(i_fcolor *out, double x, double y, struct fount_state *state) {
double v = (state->rpfunc)((state->ffunc)(x, y, state));
int i;
i = 0;
while (i < state->count
&& (v < state->segs[i].start || v > state->segs[i].end)) {
++i;
}
if (i < state->count) {
v = (fount_interps[state->segs[i].type])(v, state->segs+i);
(fount_cinterps[state->segs[i].color])(out, v, state->segs+i);
return 1;
}
else
return 0;
}
/*
=item linear_fount_f(x, y, state)
Calculate the fill parameter for a linear fountain fill.
Uses the point to line distance function, with some precalculation
done in i_fountain().
=cut
*/
static double
linear_fount_f(double x, double y, struct fount_state *state) {
return (state->lA * x + state->lB * y + state->lC) / state->AB * state->mult;
}
/*
=item bilinear_fount_f(x, y, state)
Calculate the fill parameter for a bi-linear fountain fill.
=cut
*/
static double
bilinear_fount_f(double x, double y, struct fount_state *state) {
return fabs((state->lA * x + state->lB * y + state->lC) / state->AB * state->mult);
}
/*
=item radial_fount_f(x, y, state)
Calculate the fill parameter for a radial fountain fill.
Simply uses the distance function.
=cut
*/
static double
radial_fount_f(double x, double y, struct fount_state *state) {
return sqrt((double)(state->xa-x)*(state->xa-x)
+ (double)(state->ya-y)*(state->ya-y)) * state->mult;
}
/*
=item square_fount_f(x, y, state)
Calculate the fill parameter for a square fountain fill.
Works by rotating the reference co-ordinate around the centre of the
square.
=cut
*/
static double
square_fount_f(double x, double y, struct fount_state *state) {
i_img_dim xc, yc; /* centred on A */
double xt, yt; /* rotated by theta */
xc = x - state->xa;
yc = y - state->ya;
xt = fabs(xc * state->cos + yc * state->sin);
yt = fabs(-xc * state->sin + yc * state->cos);
return (xt > yt ? xt : yt) * state->mult;
}
/*
=item revolution_fount_f(x, y, state)
Calculates the fill parameter for the revolution fountain fill.
=cut
*/
static double
revolution_fount_f(double x, double y, struct fount_state *state) {
double angle = atan2(y - state->ya, x - state->xa);
angle -= state->theta;
if (angle < 0) {
angle = fmod(angle+ PI * 4, PI*2);
}
return angle * state->mult;
}
/*
=item conical_fount_f(x, y, state)
Calculates the fill parameter for the conical fountain fill.
=cut
*/
static double
conical_fount_f(double x, double y, struct fount_state *state) {
double angle = atan2(y - state->ya, x - state->xa);
angle -= state->theta;
if (angle < -PI)
angle += PI * 2;
else if (angle > PI)
angle -= PI * 2;
return fabs(angle) * state->mult;
}
/*
=item linear_interp(pos, seg)
Calculates linear interpolation on the fill parameter. Breaks the
segment into 2 regions based in the I<middle> value.
=cut
*/
static double
linear_interp(double pos, i_fountain_seg *seg) {
if (pos < seg->middle) {
double len = seg->middle - seg->start;
if (len < EPSILON)
return 0.0;
else
return (pos - seg->start) / len / 2;
}
else {
double len = seg->end - seg->middle;
if (len < EPSILON)
return 1.0;
else
return 0.5 + (pos - seg->middle) / len / 2;
}
}
/*
=item sine_interp(pos, seg)
Calculates sine function interpolation on the fill parameter.
=cut
*/
static double
sine_interp(double pos, i_fountain_seg *seg) {
/* I wonder if there's a simple way to smooth the transition for this */
double work = linear_interp(pos, seg);
return (1-cos(work * PI))/2;
}
/*
=item sphereup_interp(pos, seg)
Calculates spherical interpolation on the fill parameter, with the cusp
at the low-end.
=cut
*/
static double
sphereup_interp(double pos, i_fountain_seg *seg) {
double work = linear_interp(pos, seg);
return sqrt(1.0 - (1-work) * (1-work));
}
/*
=item spheredown_interp(pos, seg)
Calculates spherical interpolation on the fill parameter, with the cusp
at the high-end.
=cut
*/
static double
spheredown_interp(double pos, i_fountain_seg *seg) {
double work = linear_interp(pos, seg);
return 1-sqrt(1.0 - work * work);
}
/*
=item direct_cinterp(out, pos, seg)
Calculates the fountain color based on direct scaling of the channels
of the color channels.
=cut
*/
static void
direct_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
int ch;
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ seg->c[1].channel[ch] * pos;
}
}
/*
=item hue_up_cinterp(put, pos, seg)
Calculates the fountain color based on scaling a HSV value. The hue
increases as the fill parameter increases.
=cut
*/
static void
hue_up_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
int ch;
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ seg->c[1].channel[ch] * pos;
}
i_hsv_to_rgbf(out);
}
/*
=item hue_down_cinterp(put, pos, seg)
Calculates the fountain color based on scaling a HSV value. The hue
decreases as the fill parameter increases.
=cut
*/
static void
hue_down_cinterp(i_fcolor *out, double pos, i_fountain_seg *seg) {
int ch;
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = seg->c[0].channel[ch] * (1 - pos)
+ seg->c[1].channel[ch] * pos;
}
i_hsv_to_rgbf(out);
}
/*
=item simple_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
Simple grid-based super-sampling.
=cut
*/
static int
simple_ssample(i_fcolor *out, double x, double y, struct fount_state *state) {
i_fcolor *work = state->ssample_data;
i_img_dim dx, dy;
int grid = state->parm;
double base = -0.5 + 0.5 / grid;
double step = 1.0 / grid;
int ch, i;
int samp_count = 0;
for (dx = 0; dx < grid; ++dx) {
for (dy = 0; dy < grid; ++dy) {
if (fount_getat(work+samp_count, x + base + step * dx,
y + base + step * dy, state)) {
++samp_count;
}
}
}
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = 0;
for (i = 0; i < samp_count; ++i) {
out->channel[ch] += work[i].channel[ch];
}
/* we divide by 4 rather than samp_count since if there's only one valid
sample it should be mostly transparent */
out->channel[ch] /= grid * grid;
}
return samp_count;
}
/*
=item random_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
Random super-sampling.
=cut
*/
static int
random_ssample(i_fcolor *out, double x, double y,
struct fount_state *state) {
i_fcolor *work = state->ssample_data;
int i, ch;
int maxsamples = state->parm;
double rand_scale = 1.0 / RAND_MAX;
int samp_count = 0;
for (i = 0; i < maxsamples; ++i) {
if (fount_getat(work+samp_count, x - 0.5 + rand() * rand_scale,
y - 0.5 + rand() * rand_scale, state)) {
++samp_count;
}
}
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = 0;
for (i = 0; i < samp_count; ++i) {
out->channel[ch] += work[i].channel[ch];
}
/* we divide by maxsamples rather than samp_count since if there's
only one valid sample it should be mostly transparent */
out->channel[ch] /= maxsamples;
}
return samp_count;
}
/*
=item circle_ssample(out, parm, x, y, state, ffunc, rpfunc, segs, count)
Super-sampling around the circumference of a circle.
I considered saving the sin()/cos() values and transforming step-size
around the circle, but that's inaccurate, though it may not matter
much.
=cut
*/
static int
circle_ssample(i_fcolor *out, double x, double y,
struct fount_state *state) {
i_fcolor *work = state->ssample_data;
int i, ch;
int maxsamples = state->parm;
double angle = 2 * PI / maxsamples;
double radius = 0.3; /* semi-random */
int samp_count = 0;
for (i = 0; i < maxsamples; ++i) {
if (fount_getat(work+samp_count, x + radius * cos(angle * i),
y + radius * sin(angle * i), state)) {
++samp_count;
}
}
for (ch = 0; ch < MAXCHANNELS; ++ch) {
out->channel[ch] = 0;
for (i = 0; i < samp_count; ++i) {
out->channel[ch] += work[i].channel[ch];
}
/* we divide by maxsamples rather than samp_count since if there's
only one valid sample it should be mostly transparent */
out->channel[ch] /= maxsamples;
}
return samp_count;
}
/*
=item fount_r_none(v)
Implements no repeats. Simply clamps the fill value.
=cut
*/
static double
fount_r_none(double v) {
return v < 0 ? 0 : v > 1 ? 1 : v;
}
/*
=item fount_r_sawtooth(v)
Implements sawtooth repeats. Clamps negative values and uses fmod()
on others.
=cut
*/
static double
fount_r_sawtooth(double v) {
return v < 0 ? 0 : fmod(v, 1.0);
}
/*
=item fount_r_triangle(v)
Implements triangle repeats. Clamps negative values, uses fmod to get
a range 0 through 2 and then adjusts values > 1.
=cut
*/
static double
fount_r_triangle(double v) {
if (v < 0)
return 0;
else {
v = fmod(v, 2.0);
return v > 1.0 ? 2.0 - v : v;
}
}
/*
=item fount_r_saw_both(v)
Implements sawtooth repeats in the both postive and negative directions.
Adjusts the value to be postive and then just uses fmod().
=cut
*/
static double
fount_r_saw_both(double v) {
if (v < 0)
v += 1+(int)(-v);
return fmod(v, 1.0);
}
/*
=item fount_r_tri_both(v)
Implements triangle repeats in the both postive and negative directions.
Uses fmod on the absolute value, and then adjusts values > 1.
=cut
*/
static double
fount_r_tri_both(double v) {
v = fmod(fabs(v), 2.0);
return v > 1.0 ? 2.0 - v : v;
}
/*
=item fill_fountf(fill, x, y, width, channels, data)
The fill function for fountain fills.
=cut
*/
static void
fill_fountf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *data) {
i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
while (width--) {
i_fcolor c;
int got_one;
if (f->state.ssfunc)
got_one = f->state.ssfunc(&c, x, y, &f->state);
else
got_one = fount_getat(&c, x, y, &f->state);
if (got_one)
*data++ = c;
++x;
}
}
/*
=item fount_fill_destroy(fill)
=cut
*/
static void
fount_fill_destroy(i_fill_t *fill) {
i_fill_fountain_t *f = (i_fill_fountain_t *)fill;
fount_finish_state(&f->state);
}
/*
=back
=head1 AUTHOR
Arnar M. Hrafnkelsson <addi@umich.edu>
Tony Cook <tony@develop-help.com> (i_fountain())
=head1 SEE ALSO
Imager(3)
=cut
*/
|