1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#define IMAGER_NO_CONTEXT
#include "imager.h"
#include <math.h>
static double
gauss(int x, double std) {
return 1.0/(sqrt(2.0*PI)*std)*exp(-(double)(x)*(double)(x)/(2*std*std));
}
/* Counters are as follows
l: lines
i: columns
c: filter coeffs
ch: channels
pc: coeff equalization
*/
int
i_gaussian(i_img *im, double stddev) {
return i_gaussian2( im, stddev, stddev );
}
typedef struct s_gauss_coeff {
int diameter;
int radius;
double *coeff;
} t_gauss_coeff;
static t_gauss_coeff *build_coeff( i_img *im, double stddev ) {
double *coeff = NULL;
double pc;
int radius, diameter, i;
t_gauss_coeff *ret = mymalloc(sizeof(struct s_gauss_coeff));
ret->coeff = NULL;
if (im->bits <= 8)
radius = ceil(2 * stddev);
else
radius = ceil(3 * stddev);
diameter = 1 + radius * 2;
coeff = mymalloc(sizeof(double) * diameter);
for(i=0;i <= radius;i++)
coeff[radius + i]=coeff[radius - i]=gauss(i, stddev);
pc=0.0;
for(i=0; i < diameter; i++)
pc+=coeff[i];
for(i=0;i < diameter;i++) {
coeff[i] /= pc;
// im_log((aIMCTX, 1, "i_gaussian2 Y i=%i coeff=%.2f\n", i, coeff[i] ));
}
ret->diameter = diameter;
ret->radius = radius;
ret->coeff = coeff;
return ret;
}
static void free_coeff(t_gauss_coeff *co ) {
if( co->coeff != NULL )
myfree( co->coeff );
myfree( co );
}
#define img_copy(dest, src) i_copyto( (dest), (src), 0,0, (src)->xsize,(src)->ysize, 0,0);
int
i_gaussian2(i_img *im, double stddevX, double stddevY) {
int c, ch;
i_img_dim x, y;
double pc;
t_gauss_coeff *co = NULL;
double res[MAXCHANNELS];
i_img *timg;
dIMCTXim(im);
im_log((aIMCTX, 1,"i_gaussian2(im %p, stddev %.2f,%.2f)\n",im,stddevX,stddevY));
i_clear_error();
if (stddevX < 0) {
i_push_error(0, "stddevX must be positive");
return 0;
}
if (stddevY < 0) {
i_push_error(0, "stddevY must be positive");
return 0;
}
if( stddevX == stddevY && stddevY == 0 ) {
i_push_error(0, "stddevX or stddevY must be positive");
return 0;
}
/* totally silly cutoff */
if (stddevX > 1000) {
stddevX = 1000;
}
if (stddevY > 1000) {
stddevY = 1000;
}
timg = i_sametype(im, im->xsize, im->ysize);
if( stddevX > 0 ) {
/* Build Y coefficient matrix */
co = build_coeff( im, stddevX );
im_log((aIMCTX, 1, "i_gaussian2 X coeff radius=%i diamter=%i coeff=%p\n", co->radius, co->diameter, co->coeff));
}
else {
im_log((aIMCTX, 1, "i_gaussian2 X coeff is unity\n"));
}
#code im->bits <= 8
IM_COLOR rcolor;
i_img *yin;
i_img *yout;
if( stddevX > 0 ) {
/******************/
/* Process X blur */
im_log((aIMCTX, 1, "i_gaussian2 X blur from im=%p to timg=%p\n", im, timg));
for(y = 0; y < im->ysize; y++) {
for(x = 0; x < im->xsize; x++) {
pc=0.0;
for(ch=0;ch<im->channels;ch++)
res[ch]=0;
for(c = 0;c < co->diameter; c++)
if (IM_GPIX(im,x+c-co->radius,y,&rcolor)!=-1) {
for(ch=0;ch<im->channels;ch++)
res[ch]+= rcolor.channel[ch] * co->coeff[c];
pc+=co->coeff[c];
}
for(ch=0;ch<im->channels;ch++) {
double value = res[ch] / pc;
rcolor.channel[ch] = value > IM_SAMPLE_MAX ? IM_SAMPLE_MAX : IM_ROUND(value);
}
IM_PPIX(timg, x, y, &rcolor);
}
}
/* processing is im -> timg=yin -> im=yout */
yin = timg;
yout = im;
}
else {
/* processing is im=yin -> timg=yout -> im */
yin = im;
yout = timg;
}
if( stddevY > 0 ) {
if( stddevX != stddevY ) {
if( co != NULL ) {
free_coeff(co);
co = NULL;
}
/* Build Y coefficient matrix */
co = build_coeff( im, stddevY );
im_log((aIMCTX, 1, "i_gaussian2 Y coeff radius=%i diamter=%i coeff=%p\n", co->radius, co->diameter, co->coeff));
}
/******************/
/* Process Y blur */
im_log((aIMCTX, 1, "i_gaussian2 Y blur from yin=%p to yout=%p\n", yin, yout));
for(x = 0;x < im->xsize; x++) {
for(y = 0; y < im->ysize; y++) {
pc=0.0;
for(ch=0; ch<im->channels; ch++)
res[ch]=0;
for(c=0; c < co->diameter; c++)
if (IM_GPIX(yin, x, y+c-co->radius, &rcolor)!=-1) {
for(ch=0;ch<yin->channels;ch++)
res[ch]+= rcolor.channel[ch] * co->coeff[c];
pc+=co->coeff[c];
}
for(ch=0;ch<yin->channels;ch++) {
double value = res[ch]/pc;
rcolor.channel[ch] = value > IM_SAMPLE_MAX ? IM_SAMPLE_MAX : IM_ROUND(value);
}
IM_PPIX(yout, x, y, &rcolor);
}
}
if( im != yout ) {
im_log((aIMCTX, 1, "i_gaussian2 copying yout=%p to im=%p\n", yout, im));
img_copy( im, yout );
}
}
else {
im_log((aIMCTX, 1, "i_gaussian2 Y coeff is unity\n"));
if( yin==timg ) {
im_log((aIMCTX, 1, "i_gaussian2 copying timg=%p to im=%p\n", timg, im));
img_copy( im, timg );
}
}
im_log((aIMCTX, 1, "i_gaussian2 im=%p\n", im));
im_log((aIMCTX, 1, "i_gaussian2 timg=%p\n", timg));
im_log((aIMCTX, 1, "i_gaussian2 yin=%p\n", yin));
im_log((aIMCTX, 1, "i_gaussian2 yout=%p\n", yout));
#/code
if( co != NULL )
free_coeff(co);
i_img_destroy(timg);
return 1;
}
|