1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
|
/*
* libecb - http://software.schmorp.de/pkg/libecb
*
* Copyright (©) 2009-2015,2018-2021 Marc Alexander Lehmann <libecb@schmorp.de>
* Copyright (©) 2011 Emanuele Giaquinta
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, the contents of this file may be used under the terms of
* the GNU General Public License ("GPL") version 2 or any later version,
* in which case the provisions of the GPL are applicable instead of
* the above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use your
* version of this file under the BSD license, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete the
* provisions above, a recipient may use your version of this file under
* either the BSD or the GPL.
*/
#ifndef ECB_H
#define ECB_H
/* 16 bits major, 16 bits minor */
#define ECB_VERSION 0x00010009
#include <string.h> /* for memcpy */
#if defined (_WIN32) && !defined (__MINGW32__)
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef signed char int_fast8_t;
typedef unsigned char uint_fast8_t;
typedef signed short int16_t;
typedef unsigned short uint16_t;
typedef signed int int_fast16_t;
typedef unsigned int uint_fast16_t;
typedef signed int int32_t;
typedef unsigned int uint32_t;
typedef signed int int_fast32_t;
typedef unsigned int uint_fast32_t;
#if __GNUC__
typedef signed long long int64_t;
typedef unsigned long long uint64_t;
#else /* _MSC_VER || __BORLANDC__ */
typedef signed __int64 int64_t;
typedef unsigned __int64 uint64_t;
#endif
typedef int64_t int_fast64_t;
typedef uint64_t uint_fast64_t;
#ifdef _WIN64
#define ECB_PTRSIZE 8
typedef uint64_t uintptr_t;
typedef int64_t intptr_t;
#else
#define ECB_PTRSIZE 4
typedef uint32_t uintptr_t;
typedef int32_t intptr_t;
#endif
#else
#include <inttypes.h>
#if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
#define ECB_PTRSIZE 8
#else
#define ECB_PTRSIZE 4
#endif
#endif
#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
#ifndef ECB_OPTIMIZE_SIZE
#if __OPTIMIZE_SIZE__
#define ECB_OPTIMIZE_SIZE 1
#else
#define ECB_OPTIMIZE_SIZE 0
#endif
#endif
/* work around x32 idiocy by defining proper macros */
#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
#if _ILP32
#define ECB_AMD64_X32 1
#else
#define ECB_AMD64 1
#endif
#endif
#if ECB_PTRSIZE >= 8 || ECB_AMD64_X32
#define ECB_64BIT_NATIVE 1
#else
#define ECB_64BIT_NATIVE 0
#endif
/* many compilers define _GNUC_ to some versions but then only implement
* what their idiot authors think are the "more important" extensions,
* causing enormous grief in return for some better fake benchmark numbers.
* or so.
* we try to detect these and simply assume they are not gcc - if they have
* an issue with that they should have done it right in the first place.
*/
#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
#define ECB_GCC_VERSION(major,minor) 0
#else
#define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
#endif
#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
#if __clang__ && defined __has_builtin
#define ECB_CLANG_BUILTIN(x) __has_builtin (x)
#else
#define ECB_CLANG_BUILTIN(x) 0
#endif
#if __clang__ && defined __has_extension
#define ECB_CLANG_EXTENSION(x) __has_extension (x)
#else
#define ECB_CLANG_EXTENSION(x) 0
#endif
#define ECB_CPP (__cplusplus+0)
#define ECB_CPP11 (__cplusplus >= 201103L)
#define ECB_CPP14 (__cplusplus >= 201402L)
#define ECB_CPP17 (__cplusplus >= 201703L)
#if ECB_CPP
#define ECB_C 0
#define ECB_STDC_VERSION 0
#else
#define ECB_C 1
#define ECB_STDC_VERSION __STDC_VERSION__
#endif
#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
#if ECB_CPP
#define ECB_EXTERN_C extern "C"
#define ECB_EXTERN_C_BEG ECB_EXTERN_C {
#define ECB_EXTERN_C_END }
#else
#define ECB_EXTERN_C extern
#define ECB_EXTERN_C_BEG
#define ECB_EXTERN_C_END
#endif
/*****************************************************************************/
/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
#if ECB_NO_THREADS
#define ECB_NO_SMP 1
#endif
#if ECB_NO_SMP
#define ECB_MEMORY_FENCE do { } while (0)
#endif
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
#if __xlC__ && ECB_CPP
#include <builtins.h>
#endif
#if 1400 <= _MSC_VER
#include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#define ECB_MEMORY_FENCE_RELAXED __asm__ __volatile__ ("" : : : "memory")
#if __i386 || __i386__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
#elif ECB_GCC_AMD64
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
#elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
#elif defined __ARM_ARCH_2__ \
|| defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
|| defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
|| defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
|| defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
|| defined __ARM_ARCH_5TEJ__
/* should not need any, unless running old code on newer cpu - arm doesn't support that */
#elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
|| defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
|| defined __ARM_ARCH_6T2__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
#elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
|| defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
#elif __aarch64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
#elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
#define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
#elif defined __s390__ || defined __s390x__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
#elif defined __mips__
/* GNU/Linux emulates sync on mips1 architectures, so we force its use */
/* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
#define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
#elif defined __alpha__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
#elif defined __hppa__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
#elif defined __ia64__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
#elif defined __m68k__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#elif defined __m88k__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
#elif defined __sh__
#define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
#endif
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_GCC_VERSION(4,7)
/* see comment below (stdatomic.h) about the C11 memory model. */
#define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
#define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
#define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
#undef ECB_MEMORY_FENCE_RELAXED
#define ECB_MEMORY_FENCE_RELAXED __atomic_thread_fence (__ATOMIC_RELAXED)
#elif ECB_CLANG_EXTENSION(c_atomic)
/* see comment below (stdatomic.h) about the C11 memory model. */
#define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
#define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
#define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
#undef ECB_MEMORY_FENCE_RELAXED
#define ECB_MEMORY_FENCE_RELAXED __c11_atomic_thread_fence (__ATOMIC_RELAXED)
#elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
#define ECB_MEMORY_FENCE __sync_synchronize ()
#elif _MSC_VER >= 1500 /* VC++ 2008 */
/* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
#define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
#elif _MSC_VER >= 1400 /* VC++ 2005 */
#pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
#define ECB_MEMORY_FENCE _ReadWriteBarrier ()
#define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
#define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
#elif defined _WIN32
#include <WinNT.h>
#define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
#elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
#include <mbarrier.h>
#define ECB_MEMORY_FENCE __machine_rw_barrier ()
#define ECB_MEMORY_FENCE_ACQUIRE __machine_acq_barrier ()
#define ECB_MEMORY_FENCE_RELEASE __machine_rel_barrier ()
#define ECB_MEMORY_FENCE_RELAXED __compiler_barrier ()
#elif __xlC__
#define ECB_MEMORY_FENCE __sync ()
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if ECB_C11 && !defined __STDC_NO_ATOMICS__
/* we assume that these memory fences work on all variables/all memory accesses, */
/* not just C11 atomics and atomic accesses */
#include <stdatomic.h>
#define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
#define ECB_MEMORY_FENCE_ACQUIRE atomic_thread_fence (memory_order_acquire)
#define ECB_MEMORY_FENCE_RELEASE atomic_thread_fence (memory_order_release)
#endif
#endif
#ifndef ECB_MEMORY_FENCE
#if !ECB_AVOID_PTHREADS
/*
* if you get undefined symbol references to pthread_mutex_lock,
* or failure to find pthread.h, then you should implement
* the ECB_MEMORY_FENCE operations for your cpu/compiler
* OR provide pthread.h and link against the posix thread library
* of your system.
*/
#include <pthread.h>
#define ECB_NEEDS_PTHREADS 1
#define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
#define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
#endif
#endif
#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
#endif
#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
#endif
#if !defined ECB_MEMORY_FENCE_RELAXED && defined ECB_MEMORY_FENCE
#define ECB_MEMORY_FENCE_RELAXED ECB_MEMORY_FENCE /* very heavy-handed */
#endif
/*****************************************************************************/
#if ECB_CPP
#define ecb_inline static inline
#elif ECB_GCC_VERSION(2,5)
#define ecb_inline static __inline__
#elif ECB_C99
#define ecb_inline static inline
#else
#define ecb_inline static
#endif
#if ECB_GCC_VERSION(3,3)
#define ecb_restrict __restrict__
#elif ECB_C99
#define ecb_restrict restrict
#else
#define ecb_restrict
#endif
typedef int ecb_bool;
#define ECB_CONCAT_(a, b) a ## b
#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
#define ECB_STRINGIFY_(a) # a
#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
#define ecb_function_ ecb_inline
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
#define ecb_attribute(attrlist) __attribute__ (attrlist)
#else
#define ecb_attribute(attrlist)
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
#define ecb_is_constant(expr) __builtin_constant_p (expr)
#else
/* possible C11 impl for integral types
typedef struct ecb_is_constant_struct ecb_is_constant_struct;
#define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
#define ecb_is_constant(expr) 0
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
#define ecb_expect(expr,value) __builtin_expect ((expr),(value))
#else
#define ecb_expect(expr,value) (expr)
#endif
#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
#define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
#else
#define ecb_prefetch(addr,rw,locality)
#endif
/* no emulation for ecb_decltype */
#if ECB_CPP11
// older implementations might have problems with decltype(x)::type, work around it
template<class T> struct ecb_decltype_t { typedef T type; };
#define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
#define ecb_decltype(x) __typeof__ (x)
#endif
#if _MSC_VER >= 1300
#define ecb_deprecated __declspec (deprecated)
#else
#define ecb_deprecated ecb_attribute ((__deprecated__))
#endif
#if _MSC_VER >= 1500
#define ecb_deprecated_message(msg) __declspec (deprecated (msg))
#elif ECB_GCC_VERSION(4,5)
#define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
#else
#define ecb_deprecated_message(msg) ecb_deprecated
#endif
#if _MSC_VER >= 1400
#define ecb_noinline __declspec (noinline)
#else
#define ecb_noinline ecb_attribute ((__noinline__))
#endif
#define ecb_unused ecb_attribute ((__unused__))
#define ecb_const ecb_attribute ((__const__))
#define ecb_pure ecb_attribute ((__pure__))
#if ECB_C11 || __IBMC_NORETURN
/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
#define ecb_noreturn _Noreturn
#elif ECB_CPP11
#define ecb_noreturn [[noreturn]]
#elif _MSC_VER >= 1200
/* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
#define ecb_noreturn __declspec (noreturn)
#else
#define ecb_noreturn ecb_attribute ((__noreturn__))
#endif
#if ECB_GCC_VERSION(4,3)
#define ecb_artificial ecb_attribute ((__artificial__))
#define ecb_hot ecb_attribute ((__hot__))
#define ecb_cold ecb_attribute ((__cold__))
#else
#define ecb_artificial
#define ecb_hot
#define ecb_cold
#endif
/* put around conditional expressions if you are very sure that the */
/* expression is mostly true or mostly false. note that these return */
/* booleans, not the expression. */
#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
/* for compatibility to the rest of the world */
#define ecb_likely(expr) ecb_expect_true (expr)
#define ecb_unlikely(expr) ecb_expect_false (expr)
/* count trailing zero bits and count # of one bits */
#if ECB_GCC_VERSION(3,4) \
|| (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
&& ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
&& ECB_CLANG_BUILTIN(__builtin_popcount))
/* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
#define ecb_ld32(x) (__builtin_clz (x) ^ 31)
#define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
#define ecb_ctz32(x) __builtin_ctz (x)
#define ecb_ctz64(x) __builtin_ctzll (x)
#define ecb_popcount32(x) __builtin_popcount (x)
/* no popcountll */
#else
ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
ecb_function_ ecb_const int
ecb_ctz32 (uint32_t x)
{
#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
unsigned long r;
_BitScanForward (&r, x);
return (int)r;
#else
int r = 0;
x &= ~x + 1; /* this isolates the lowest bit */
#if ECB_branchless_on_i386
r += !!(x & 0xaaaaaaaa) << 0;
r += !!(x & 0xcccccccc) << 1;
r += !!(x & 0xf0f0f0f0) << 2;
r += !!(x & 0xff00ff00) << 3;
r += !!(x & 0xffff0000) << 4;
#else
if (x & 0xaaaaaaaa) r += 1;
if (x & 0xcccccccc) r += 2;
if (x & 0xf0f0f0f0) r += 4;
if (x & 0xff00ff00) r += 8;
if (x & 0xffff0000) r += 16;
#endif
return r;
#endif
}
ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
ecb_function_ ecb_const int
ecb_ctz64 (uint64_t x)
{
#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
unsigned long r;
_BitScanForward64 (&r, x);
return (int)r;
#else
int shift = x & 0xffffffff ? 0 : 32;
return ecb_ctz32 (x >> shift) + shift;
#endif
}
ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
ecb_function_ ecb_const int
ecb_popcount32 (uint32_t x)
{
x -= (x >> 1) & 0x55555555;
x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
x = ((x >> 4) + x) & 0x0f0f0f0f;
x *= 0x01010101;
return x >> 24;
}
ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
{
#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
unsigned long r;
_BitScanReverse (&r, x);
return (int)r;
#else
int r = 0;
if (x >> 16) { x >>= 16; r += 16; }
if (x >> 8) { x >>= 8; r += 8; }
if (x >> 4) { x >>= 4; r += 4; }
if (x >> 2) { x >>= 2; r += 2; }
if (x >> 1) { r += 1; }
return r;
#endif
}
ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
{
#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
unsigned long r;
_BitScanReverse64 (&r, x);
return (int)r;
#else
int r = 0;
if (x >> 32) { x >>= 32; r += 32; }
return r + ecb_ld32 (x);
#endif
}
#endif
ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
{
return ( (x * 0x0802U & 0x22110U)
| (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
}
ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
{
x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
x = ( x >> 8 ) | ( x << 8);
return x;
}
ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
{
x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
x = ( x >> 16 ) | ( x << 16);
return x;
}
/* popcount64 is only available on 64 bit cpus as gcc builtin */
/* so for this version we are lazy */
ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
ecb_function_ ecb_const int
ecb_popcount64 (uint64_t x)
{
return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
}
ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
#if ECB_CPP
inline uint8_t ecb_ctz (uint8_t v) { return ecb_ctz32 (v); }
inline uint16_t ecb_ctz (uint16_t v) { return ecb_ctz32 (v); }
inline uint32_t ecb_ctz (uint32_t v) { return ecb_ctz32 (v); }
inline uint64_t ecb_ctz (uint64_t v) { return ecb_ctz64 (v); }
inline bool ecb_is_pot (uint8_t v) { return ecb_is_pot32 (v); }
inline bool ecb_is_pot (uint16_t v) { return ecb_is_pot32 (v); }
inline bool ecb_is_pot (uint32_t v) { return ecb_is_pot32 (v); }
inline bool ecb_is_pot (uint64_t v) { return ecb_is_pot64 (v); }
inline int ecb_ld (uint8_t v) { return ecb_ld32 (v); }
inline int ecb_ld (uint16_t v) { return ecb_ld32 (v); }
inline int ecb_ld (uint32_t v) { return ecb_ld32 (v); }
inline int ecb_ld (uint64_t v) { return ecb_ld64 (v); }
inline int ecb_popcount (uint8_t v) { return ecb_popcount32 (v); }
inline int ecb_popcount (uint16_t v) { return ecb_popcount32 (v); }
inline int ecb_popcount (uint32_t v) { return ecb_popcount32 (v); }
inline int ecb_popcount (uint64_t v) { return ecb_popcount64 (v); }
inline uint8_t ecb_bitrev (uint8_t v) { return ecb_bitrev8 (v); }
inline uint16_t ecb_bitrev (uint16_t v) { return ecb_bitrev16 (v); }
inline uint32_t ecb_bitrev (uint32_t v) { return ecb_bitrev32 (v); }
inline uint8_t ecb_rotl (uint8_t v, unsigned int count) { return ecb_rotl8 (v, count); }
inline uint16_t ecb_rotl (uint16_t v, unsigned int count) { return ecb_rotl16 (v, count); }
inline uint32_t ecb_rotl (uint32_t v, unsigned int count) { return ecb_rotl32 (v, count); }
inline uint64_t ecb_rotl (uint64_t v, unsigned int count) { return ecb_rotl64 (v, count); }
inline uint8_t ecb_rotr (uint8_t v, unsigned int count) { return ecb_rotr8 (v, count); }
inline uint16_t ecb_rotr (uint16_t v, unsigned int count) { return ecb_rotr16 (v, count); }
inline uint32_t ecb_rotr (uint32_t v, unsigned int count) { return ecb_rotr32 (v, count); }
inline uint64_t ecb_rotr (uint64_t v, unsigned int count) { return ecb_rotr64 (v, count); }
#endif
#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
#if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
#define ecb_bswap16(x) __builtin_bswap16 (x)
#else
#define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
#endif
#define ecb_bswap32(x) __builtin_bswap32 (x)
#define ecb_bswap64(x) __builtin_bswap64 (x)
#elif _MSC_VER
#include <stdlib.h>
#define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
#define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
#define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
#else
ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
ecb_function_ ecb_const uint16_t
ecb_bswap16 (uint16_t x)
{
return ecb_rotl16 (x, 8);
}
ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
ecb_function_ ecb_const uint32_t
ecb_bswap32 (uint32_t x)
{
return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
}
ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
ecb_function_ ecb_const uint64_t
ecb_bswap64 (uint64_t x)
{
return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
}
#endif
#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
#define ecb_unreachable() __builtin_unreachable ()
#else
/* this seems to work fine, but gcc always emits a warning for it :/ */
ecb_inline ecb_noreturn void ecb_unreachable (void);
ecb_inline ecb_noreturn void ecb_unreachable (void) { }
#endif
/* try to tell the compiler that some condition is definitely true */
#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
ecb_inline ecb_const uint32_t
ecb_byteorder_helper (void)
{
/* the union code still generates code under pressure in gcc, */
/* but less than using pointers, and always seems to */
/* successfully return a constant. */
/* the reason why we have this horrible preprocessor mess */
/* is to avoid it in all cases, at least on common architectures */
/* or when using a recent enough gcc version (>= 4.6) */
#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
|| ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
#define ECB_LITTLE_ENDIAN 1
return 0x44332211;
#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
|| ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
#define ECB_BIG_ENDIAN 1
return 0x11223344;
#else
union
{
uint8_t c[4];
uint32_t u;
} u = { 0x11, 0x22, 0x33, 0x44 };
return u.u;
#endif
}
ecb_inline ecb_const ecb_bool ecb_big_endian (void);
ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
ecb_inline ecb_const ecb_bool ecb_little_endian (void);
ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
/*****************************************************************************/
/* unaligned load/store */
ecb_inline uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
ecb_inline uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
ecb_inline uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
ecb_inline uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
ecb_inline uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
ecb_inline uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
ecb_inline uint_fast16_t ecb_peek_u16_u (const void *ptr) { uint16_t v; memcpy (&v, ptr, sizeof (v)); return v; }
ecb_inline uint_fast32_t ecb_peek_u32_u (const void *ptr) { uint32_t v; memcpy (&v, ptr, sizeof (v)); return v; }
ecb_inline uint_fast64_t ecb_peek_u64_u (const void *ptr) { uint64_t v; memcpy (&v, ptr, sizeof (v)); return v; }
ecb_inline uint_fast16_t ecb_peek_be_u16_u (const void *ptr) { return ecb_be_u16_to_host (ecb_peek_u16_u (ptr)); }
ecb_inline uint_fast32_t ecb_peek_be_u32_u (const void *ptr) { return ecb_be_u32_to_host (ecb_peek_u32_u (ptr)); }
ecb_inline uint_fast64_t ecb_peek_be_u64_u (const void *ptr) { return ecb_be_u64_to_host (ecb_peek_u64_u (ptr)); }
ecb_inline uint_fast16_t ecb_peek_le_u16_u (const void *ptr) { return ecb_le_u16_to_host (ecb_peek_u16_u (ptr)); }
ecb_inline uint_fast32_t ecb_peek_le_u32_u (const void *ptr) { return ecb_le_u32_to_host (ecb_peek_u32_u (ptr)); }
ecb_inline uint_fast64_t ecb_peek_le_u64_u (const void *ptr) { return ecb_le_u64_to_host (ecb_peek_u64_u (ptr)); }
ecb_inline uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v) { return ecb_little_endian () ? ecb_bswap16 (v) : v; }
ecb_inline uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v) { return ecb_little_endian () ? ecb_bswap32 (v) : v; }
ecb_inline uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v) { return ecb_little_endian () ? ecb_bswap64 (v) : v; }
ecb_inline uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v) { return ecb_big_endian () ? ecb_bswap16 (v) : v; }
ecb_inline uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v) { return ecb_big_endian () ? ecb_bswap32 (v) : v; }
ecb_inline uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v) { return ecb_big_endian () ? ecb_bswap64 (v) : v; }
ecb_inline void ecb_poke_u16_u (void *ptr, uint16_t v) { memcpy (ptr, &v, sizeof (v)); }
ecb_inline void ecb_poke_u32_u (void *ptr, uint32_t v) { memcpy (ptr, &v, sizeof (v)); }
ecb_inline void ecb_poke_u64_u (void *ptr, uint64_t v) { memcpy (ptr, &v, sizeof (v)); }
ecb_inline void ecb_poke_be_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_be_u16 (v)); }
ecb_inline void ecb_poke_be_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_be_u32 (v)); }
ecb_inline void ecb_poke_be_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_be_u64 (v)); }
ecb_inline void ecb_poke_le_u16_u (void *ptr, uint_fast16_t v) { ecb_poke_u16_u (ptr, ecb_host_to_le_u16 (v)); }
ecb_inline void ecb_poke_le_u32_u (void *ptr, uint_fast32_t v) { ecb_poke_u32_u (ptr, ecb_host_to_le_u32 (v)); }
ecb_inline void ecb_poke_le_u64_u (void *ptr, uint_fast64_t v) { ecb_poke_u64_u (ptr, ecb_host_to_le_u64 (v)); }
#if ECB_CPP
inline uint8_t ecb_bswap (uint8_t v) { return v; }
inline uint16_t ecb_bswap (uint16_t v) { return ecb_bswap16 (v); }
inline uint32_t ecb_bswap (uint32_t v) { return ecb_bswap32 (v); }
inline uint64_t ecb_bswap (uint64_t v) { return ecb_bswap64 (v); }
template<typename T> inline T ecb_be_to_host (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
template<typename T> inline T ecb_le_to_host (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
template<typename T> inline T ecb_peek (const void *ptr) { return *(const T *)ptr; }
template<typename T> inline T ecb_peek_be (const void *ptr) { return ecb_be_to_host (ecb_peek <T> (ptr)); }
template<typename T> inline T ecb_peek_le (const void *ptr) { return ecb_le_to_host (ecb_peek <T> (ptr)); }
template<typename T> inline T ecb_peek_u (const void *ptr) { T v; memcpy (&v, ptr, sizeof (v)); return v; }
template<typename T> inline T ecb_peek_be_u (const void *ptr) { return ecb_be_to_host (ecb_peek_u<T> (ptr)); }
template<typename T> inline T ecb_peek_le_u (const void *ptr) { return ecb_le_to_host (ecb_peek_u<T> (ptr)); }
template<typename T> inline T ecb_host_to_be (T v) { return ecb_little_endian () ? ecb_bswap (v) : v; }
template<typename T> inline T ecb_host_to_le (T v) { return ecb_big_endian () ? ecb_bswap (v) : v; }
template<typename T> inline void ecb_poke (void *ptr, T v) { *(T *)ptr = v; }
template<typename T> inline void ecb_poke_be (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_be (v)); }
template<typename T> inline void ecb_poke_le (void *ptr, T v) { return ecb_poke <T> (ptr, ecb_host_to_le (v)); }
template<typename T> inline void ecb_poke_u (void *ptr, T v) { memcpy (ptr, &v, sizeof (v)); }
template<typename T> inline void ecb_poke_be_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_be (v)); }
template<typename T> inline void ecb_poke_le_u (void *ptr, T v) { return ecb_poke_u<T> (ptr, ecb_host_to_le (v)); }
#endif
/*****************************************************************************/
/* division */
#if ECB_GCC_VERSION(3,0) || ECB_C99
/* C99 tightened the definition of %, so we can use a more efficient version */
#define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
#else
#define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
#endif
#if ECB_CPP
template<typename T>
static inline T ecb_div_rd (T val, T div)
{
return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
}
template<typename T>
static inline T ecb_div_ru (T val, T div)
{
return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
}
#else
#define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
#define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
#endif
/*****************************************************************************/
/* array length */
#if ecb_cplusplus_does_not_suck
/* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
template<typename T, int N>
static inline int ecb_array_length (const T (&arr)[N])
{
return N;
}
#else
#define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
#endif
/*****************************************************************************/
/* IEEE 754-2008 half float conversions */
ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
ecb_function_ ecb_const uint32_t
ecb_binary16_to_binary32 (uint32_t x)
{
unsigned int s = (x & 0x8000) << (31 - 15);
int e = (x >> 10) & 0x001f;
unsigned int m = x & 0x03ff;
if (ecb_expect_false (e == 31))
/* infinity or NaN */
e = 255 - (127 - 15);
else if (ecb_expect_false (!e))
{
if (ecb_expect_true (!m))
/* zero, handled by code below by forcing e to 0 */
e = 0 - (127 - 15);
else
{
/* subnormal, renormalise */
unsigned int s = 10 - ecb_ld32 (m);
m = (m << s) & 0x3ff; /* mask implicit bit */
e -= s - 1;
}
}
/* e and m now are normalised, or zero, (or inf or nan) */
e += 127 - 15;
return s | (e << 23) | (m << (23 - 10));
}
ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
ecb_function_ ecb_const uint16_t
ecb_binary32_to_binary16 (uint32_t x)
{
unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
unsigned int m = x & 0x007fffff;
x &= 0x7fffffff;
/* if it's within range of binary16 normals, use fast path */
if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
{
/* mantissa round-to-even */
m += 0x00000fff + ((m >> (23 - 10)) & 1);
/* handle overflow */
if (ecb_expect_false (m >= 0x00800000))
{
m >>= 1;
e += 1;
}
return s | (e << 10) | (m >> (23 - 10));
}
/* handle large numbers and infinity */
if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
return s | 0x7c00;
/* handle zero, subnormals and small numbers */
if (ecb_expect_true (x < 0x38800000))
{
/* zero */
if (ecb_expect_true (!x))
return s;
/* handle subnormals */
/* too small, will be zero */
if (e < (14 - 24)) /* might not be sharp, but is good enough */
return s;
m |= 0x00800000; /* make implicit bit explicit */
/* very tricky - we need to round to the nearest e (+10) bit value */
{
unsigned int bits = 14 - e;
unsigned int half = (1 << (bits - 1)) - 1;
unsigned int even = (m >> bits) & 1;
/* if this overflows, we will end up with a normalised number */
m = (m + half + even) >> bits;
}
return s | m;
}
/* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
m >>= 13;
return s | 0x7c00 | m | !m;
}
/*******************************************************************************/
/* fast integer to ascii */
/*
* This code is pretty complicated because it is general. The idea behind it,
* however, is pretty simple: first, the number is multiplied with a scaling
* factor (2**bits / 10**(digits-1)) to convert the integer into a fixed-point
* number with the first digit in the upper bits.
* Then this digit is converted to text and masked out. The resulting number
* is then multiplied by 10, by multiplying the fixed point representation
* by 5 and shifting the (binary) decimal point one to the right, so a 4.28
* format becomes 5.27, 6.26 and so on.
* The rest involves only advancing the pointer if we already generated a
* non-zero digit, so leading zeroes are overwritten.
*/
// simply return a mask with "bits" bits set
#define ecb_i2a_mask(type,bits) ((((type)1) << (bits)) - 1)
// oputput a single digit. maskvalue is 10**digitidx
#define ecb_i2a_digit(type,bits,digitmask,maskvalue,digitidx) \
if (digitmask >= maskvalue) /* constant, used to decide how many digits to generate */ \
{ \
char digit = x >> (bits - digitidx); /* calculate the topmost digit */ \
*ptr = digit + '0'; /* output it */ \
nz = (digitmask == maskvalue) || nz || digit; /* first term == always output last digit */ \
ptr += nz; /* output digit only if non-zero digit seen */ \
x = (x & ecb_i2a_mask (type, bits - digitidx)) * 5; /* *10, but shift decimal point right */ \
}
// convert integer to fixed point format and multiply out digits, highest first
// requires magic constants: max. digits and number of bits after the decimal point
#define ecb_i2a_def(suffix,ptr,v,type,bits,digitmask,lz) \
ecb_inline char *ecb_i2a_ ## suffix (char *ptr, uint32_t u) \
{ \
char nz = lz; /* non-zero digit seen? */ \
/* convert to x.bits fixed-point */ \
type x = u * ((ecb_i2a_mask (type, bits) + digitmask) / digitmask); \
/* output up to 10 digits */ \
ecb_i2a_digit (type,bits,digitmask, 1, 0); \
ecb_i2a_digit (type,bits,digitmask, 10, 1); \
ecb_i2a_digit (type,bits,digitmask, 100, 2); \
ecb_i2a_digit (type,bits,digitmask, 1000, 3); \
ecb_i2a_digit (type,bits,digitmask, 10000, 4); \
ecb_i2a_digit (type,bits,digitmask, 100000, 5); \
ecb_i2a_digit (type,bits,digitmask, 1000000, 6); \
ecb_i2a_digit (type,bits,digitmask, 10000000, 7); \
ecb_i2a_digit (type,bits,digitmask, 100000000, 8); \
ecb_i2a_digit (type,bits,digitmask, 1000000000, 9); \
return ptr; \
}
// predefined versions of the above, for various digits
// ecb_i2a_xN = almost N digits, limit defined by macro
// ecb_i2a_N = up to N digits, leading zeroes suppressed
// ecb_i2a_0N = exactly N digits, including leading zeroes
// non-leading-zero versions, limited range
#define ECB_I2A_MAX_X5 59074 // limit for ecb_i2a_x5
#define ECB_I2A_MAX_X10 2932500665 // limit for ecb_i2a_x10
ecb_i2a_def ( x5, ptr, v, uint32_t, 26, 10000, 0)
ecb_i2a_def (x10, ptr, v, uint64_t, 60, 1000000000, 0)
// non-leading zero versions, all digits, 4 and 9 are optimal for 32/64 bit
ecb_i2a_def ( 2, ptr, v, uint32_t, 10, 10, 0)
ecb_i2a_def ( 3, ptr, v, uint32_t, 12, 100, 0)
ecb_i2a_def ( 4, ptr, v, uint32_t, 26, 1000, 0)
ecb_i2a_def ( 5, ptr, v, uint64_t, 30, 10000, 0)
ecb_i2a_def ( 6, ptr, v, uint64_t, 36, 100000, 0)
ecb_i2a_def ( 7, ptr, v, uint64_t, 44, 1000000, 0)
ecb_i2a_def ( 8, ptr, v, uint64_t, 50, 10000000, 0)
ecb_i2a_def ( 9, ptr, v, uint64_t, 56, 100000000, 0)
// leading-zero versions, all digits, 04 and 09 are optimal for 32/64 bit
ecb_i2a_def (02, ptr, v, uint32_t, 10, 10, 1)
ecb_i2a_def (03, ptr, v, uint32_t, 12, 100, 1)
ecb_i2a_def (04, ptr, v, uint32_t, 26, 1000, 1)
ecb_i2a_def (05, ptr, v, uint64_t, 30, 10000, 1)
ecb_i2a_def (06, ptr, v, uint64_t, 36, 100000, 1)
ecb_i2a_def (07, ptr, v, uint64_t, 44, 1000000, 1)
ecb_i2a_def (08, ptr, v, uint64_t, 50, 10000000, 1)
ecb_i2a_def (09, ptr, v, uint64_t, 56, 100000000, 1)
#define ECB_I2A_I32_DIGITS 11
#define ECB_I2A_U32_DIGITS 10
#define ECB_I2A_I64_DIGITS 20
#define ECB_I2A_U64_DIGITS 21
#define ECB_I2A_MAX_DIGITS 21
ecb_inline char *
ecb_i2a_u32 (char *ptr, uint32_t u)
{
#if ECB_64BIT_NATIVE
if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
ptr = ecb_i2a_x10 (ptr, u);
else // x10 almost, but not fully, covers 32 bit
{
uint32_t u1 = u % 1000000000;
uint32_t u2 = u / 1000000000;
*ptr++ = u2 + '0';
ptr = ecb_i2a_09 (ptr, u1);
}
#else
if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
ecb_i2a_x5 (ptr, u);
else if (ecb_expect_true (u <= ECB_I2A_MAX_X5 * 10000))
{
uint32_t u1 = u % 10000;
uint32_t u2 = u / 10000;
ptr = ecb_i2a_x5 (ptr, u2);
ptr = ecb_i2a_04 (ptr, u1);
}
else
{
uint32_t u1 = u % 10000;
uint32_t ua = u / 10000;
uint32_t u2 = ua % 10000;
uint32_t u3 = ua / 10000;
ptr = ecb_i2a_2 (ptr, u3);
ptr = ecb_i2a_04 (ptr, u2);
ptr = ecb_i2a_04 (ptr, u1);
}
#endif
return ptr;
}
ecb_inline char *
ecb_i2a_i32 (char *ptr, int32_t v)
{
*ptr = '-'; ptr += v < 0;
uint32_t u = v < 0 ? -(uint32_t)v : v;
#if ECB_64BIT_NATIVE
ptr = ecb_i2a_x10 (ptr, u); // x10 fully covers 31 bit
#else
ptr = ecb_i2a_u32 (ptr, u);
#endif
return ptr;
}
ecb_inline char *
ecb_i2a_u64 (char *ptr, uint64_t u)
{
#if ECB_64BIT_NATIVE
if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
ptr = ecb_i2a_x10 (ptr, u);
else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
{
uint64_t u1 = u % 1000000000;
uint64_t u2 = u / 1000000000;
ptr = ecb_i2a_x10 (ptr, u2);
ptr = ecb_i2a_09 (ptr, u1);
}
else
{
uint64_t u1 = u % 1000000000;
uint64_t ua = u / 1000000000;
uint64_t u2 = ua % 1000000000;
uint64_t u3 = ua / 1000000000;
ptr = ecb_i2a_2 (ptr, u3);
ptr = ecb_i2a_09 (ptr, u2);
ptr = ecb_i2a_09 (ptr, u1);
}
#else
if (ecb_expect_true (u <= ECB_I2A_MAX_X5))
ptr = ecb_i2a_x5 (ptr, u);
else
{
uint64_t u1 = u % 10000;
uint64_t u2 = u / 10000;
ptr = ecb_i2a_u64 (ptr, u2);
ptr = ecb_i2a_04 (ptr, u1);
}
#endif
return ptr;
}
ecb_inline char *
ecb_i2a_i64 (char *ptr, int64_t v)
{
*ptr = '-'; ptr += v < 0;
uint64_t u = v < 0 ? -(uint64_t)v : v;
#if ECB_64BIT_NATIVE
if (ecb_expect_true (u <= ECB_I2A_MAX_X10))
ptr = ecb_i2a_x10 (ptr, u);
else if (ecb_expect_false (u <= ECB_I2A_MAX_X10 * 1000000000))
{
uint64_t u1 = u % 1000000000;
uint64_t u2 = u / 1000000000;
ptr = ecb_i2a_x10 (ptr, u2);
ptr = ecb_i2a_09 (ptr, u1);
}
else
{
uint64_t u1 = u % 1000000000;
uint64_t ua = u / 1000000000;
uint64_t u2 = ua % 1000000000;
uint64_t u3 = ua / 1000000000;
// 2**31 is 19 digits, so the top is exactly one digit
*ptr++ = u3 + '0';
ptr = ecb_i2a_09 (ptr, u2);
ptr = ecb_i2a_09 (ptr, u1);
}
#else
ptr = ecb_i2a_u64 (ptr, u);
#endif
return ptr;
}
/*******************************************************************************/
/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
/* basically, everything uses "ieee pure-endian" floating point numbers */
/* the only noteworthy exception is ancient armle, which uses order 43218765 */
#if 0 \
|| __i386 || __i386__ \
|| ECB_GCC_AMD64 \
|| __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
|| defined __s390__ || defined __s390x__ \
|| defined __mips__ \
|| defined __alpha__ \
|| defined __hppa__ \
|| defined __ia64__ \
|| defined __m68k__ \
|| defined __m88k__ \
|| defined __sh__ \
|| defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
|| (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
|| defined __aarch64__
#define ECB_STDFP 1
#else
#define ECB_STDFP 0
#endif
#ifndef ECB_NO_LIBM
#include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
/* only the oldest of old doesn't have this one. solaris. */
#ifdef INFINITY
#define ECB_INFINITY INFINITY
#else
#define ECB_INFINITY HUGE_VAL
#endif
#ifdef NAN
#define ECB_NAN NAN
#else
#define ECB_NAN ECB_INFINITY
#endif
#if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
#define ecb_ldexpf(x,e) ldexpf ((x), (e))
#define ecb_frexpf(x,e) frexpf ((x), (e))
#else
#define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
#define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
#endif
/* convert a float to ieee single/binary32 */
ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
ecb_function_ ecb_const uint32_t
ecb_float_to_binary32 (float x)
{
uint32_t r;
#if ECB_STDFP
memcpy (&r, &x, 4);
#else
/* slow emulation, works for anything but -0 */
uint32_t m;
int e;
if (x == 0e0f ) return 0x00000000U;
if (x > +3.40282346638528860e+38f) return 0x7f800000U;
if (x < -3.40282346638528860e+38f) return 0xff800000U;
if (x != x ) return 0x7fbfffffU;
m = ecb_frexpf (x, &e) * 0x1000000U;
r = m & 0x80000000U;
if (r)
m = -m;
if (e <= -126)
{
m &= 0xffffffU;
m >>= (-125 - e);
e = -126;
}
r |= (e + 126) << 23;
r |= m & 0x7fffffU;
#endif
return r;
}
/* converts an ieee single/binary32 to a float */
ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
ecb_function_ ecb_const float
ecb_binary32_to_float (uint32_t x)
{
float r;
#if ECB_STDFP
memcpy (&r, &x, 4);
#else
/* emulation, only works for normals and subnormals and +0 */
int neg = x >> 31;
int e = (x >> 23) & 0xffU;
x &= 0x7fffffU;
if (e)
x |= 0x800000U;
else
e = 1;
/* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
r = neg ? -r : r;
#endif
return r;
}
/* convert a double to ieee double/binary64 */
ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
ecb_function_ ecb_const uint64_t
ecb_double_to_binary64 (double x)
{
uint64_t r;
#if ECB_STDFP
memcpy (&r, &x, 8);
#else
/* slow emulation, works for anything but -0 */
uint64_t m;
int e;
if (x == 0e0 ) return 0x0000000000000000U;
if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
if (x != x ) return 0X7ff7ffffffffffffU;
m = frexp (x, &e) * 0x20000000000000U;
r = m & 0x8000000000000000;;
if (r)
m = -m;
if (e <= -1022)
{
m &= 0x1fffffffffffffU;
m >>= (-1021 - e);
e = -1022;
}
r |= ((uint64_t)(e + 1022)) << 52;
r |= m & 0xfffffffffffffU;
#endif
return r;
}
/* converts an ieee double/binary64 to a double */
ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
ecb_function_ ecb_const double
ecb_binary64_to_double (uint64_t x)
{
double r;
#if ECB_STDFP
memcpy (&r, &x, 8);
#else
/* emulation, only works for normals and subnormals and +0 */
int neg = x >> 63;
int e = (x >> 52) & 0x7ffU;
x &= 0xfffffffffffffU;
if (e)
x |= 0x10000000000000U;
else
e = 1;
/* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
r = neg ? -r : r;
#endif
return r;
}
/* convert a float to ieee half/binary16 */
ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
ecb_function_ ecb_const uint16_t
ecb_float_to_binary16 (float x)
{
return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
}
/* convert an ieee half/binary16 to float */
ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
ecb_function_ ecb_const float
ecb_binary16_to_float (uint16_t x)
{
return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
}
#endif
#endif
|