1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
/**********************************************************************
Copyright(c) 2011-2015 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#ifndef _TEST_H
#define _TEST_H
/**
* @file test.h
* @brief Test helper include for common perf and test macros
*
* This is a helper file to enable short and simple tests. Not intended for use
* in library functions or production. Includes helper routines for alignment,
* benchmark timing, and filesize.
*/
#ifdef __cplusplus
extern "C" {
#endif
#include <stdio.h>
#include <stdint.h>
#ifdef _MSC_VER
#define inline __inline
#endif
/* Make os-independent alignment attribute, alloc and free. */
#if defined __unix__ || defined __APPLE__
#define DECLARE_ALIGNED(decl, alignval) decl __attribute__((aligned(alignval)))
#define __forceinline static inline
#define aligned_free(x) free(x)
#else
#ifdef __MINGW32__
#define DECLARE_ALIGNED(decl, alignval) decl __attribute__((aligned(alignval)))
#define posix_memalign(p, algn, len) \
(NULL == (*((char **) (p)) = (void *) _aligned_malloc(len, algn)))
#define aligned_free(x) _aligned_free(x)
#else
#define DECLARE_ALIGNED(decl, alignval) __declspec(align(alignval)) decl
#define posix_memalign(p, algn, len) \
(NULL == (*((char **) (p)) = (void *) _aligned_malloc(len, algn)))
#define aligned_free(x) _aligned_free(x)
#endif
#endif
#ifdef DEBUG
#define DEBUG_PRINT(x) printf x
#else
#define DEBUG_PRINT(x) \
do { \
} while (0)
#endif
/* Decide whether to use benchmark time as an approximation or a minimum. Fewer
* calls to the timer are required for the approximation case.*/
#define BENCHMARK_MIN_TIME 0
#define BENCHMARK_APPROX_TIME 1
#ifndef BENCHMARK_TYPE
#define BENCHMARK_TYPE BENCHMARK_MIN_TIME
#endif
#ifdef USE_RDTSC
/* The use of rtdsc is nuanced. On many processors it corresponds to a
* standardized clock source. To obtain a meaningful result it may be
* necessary to fix the CPU clock to match the rtdsc tick rate.
*/
#include <inttypes.h>
#include <x86intrin.h>
#define USE_CYCLES
#else
#include <time.h>
#define USE_SECONDS
#endif
#ifdef USE_RDTSC
#ifndef BENCHMARK_TIME
#define BENCHMARK_TIME 6
#endif
#define GHZ 1000000000
#define UNIT_SCALE (GHZ)
#define CALIBRATE_TIME (UNIT_SCALE / 2)
static inline long long
get_time(void)
{
unsigned int dummy;
return __rdtscp(&dummy);
}
static inline long long
get_res(void)
{
return 1;
}
#else
#ifndef BENCHMARK_TIME
#define BENCHMARK_TIME 3
#endif
#ifdef _MSC_VER
#define UNIT_SCALE get_res()
#define CALIBRATE_TIME (UNIT_SCALE / 4)
static inline long long
get_time(void)
{
long long ret = 0;
QueryPerformanceCounter(&ret);
return ret;
}
static inline long long
get_res(void)
{
long long ret = 0;
QueryPerformanceFrequency(&ret);
return ret;
}
#else
#define NANO_SCALE 1000000000
#define UNIT_SCALE NANO_SCALE
#define CALIBRATE_TIME (UNIT_SCALE / 4)
#ifdef __FreeBSD__
#define CLOCK_ID CLOCK_MONOTONIC_PRECISE
#else
#define CLOCK_ID CLOCK_MONOTONIC
#endif
static inline long long
get_time(void)
{
struct timespec time;
long long nano_total;
clock_gettime(CLOCK_ID, &time);
nano_total = time.tv_sec;
nano_total *= NANO_SCALE;
nano_total += time.tv_nsec;
return nano_total;
}
static inline long long
get_res(void)
{
struct timespec time;
long long nano_total;
clock_getres(CLOCK_ID, &time);
nano_total = time.tv_sec;
nano_total *= NANO_SCALE;
nano_total += time.tv_nsec;
return nano_total;
}
#endif
#endif
struct perf {
long long start;
long long stop;
long long run_total;
long long iterations;
};
static inline void
perf_init(struct perf *p)
{
p->start = 0;
p->stop = 0;
p->run_total = 0;
}
static inline void
perf_continue(struct perf *p)
{
p->start = get_time();
}
static inline void
perf_pause(struct perf *p)
{
p->stop = get_time();
p->run_total = p->run_total + p->stop - p->start;
p->start = p->stop;
}
static inline void
perf_start(struct perf *p)
{
perf_init(p);
perf_continue(p);
}
static inline void
perf_stop(struct perf *p)
{
perf_pause(p);
}
static inline double
get_time_elapsed(struct perf *p)
{
return 1.0 * p->run_total / UNIT_SCALE;
}
static inline long long
get_base_elapsed(struct perf *p)
{
return p->run_total;
}
static inline unsigned long long
estimate_perf_iterations(struct perf *p, unsigned long long runs, unsigned long long total)
{
total = total * runs;
if (get_base_elapsed(p) > 0)
return (total + get_base_elapsed(p) - 1) / get_base_elapsed(p);
else
return (total + get_res() - 1) / get_res();
}
#define CALIBRATE(PERF, FUNC_CALL) \
{ \
unsigned long long _i, _iter = 1; \
perf_start(PERF); \
FUNC_CALL; \
perf_pause(PERF); \
\
while (get_base_elapsed(PERF) < CALIBRATE_TIME) { \
_iter = estimate_perf_iterations(PERF, _iter, 2 * CALIBRATE_TIME); \
perf_start(PERF); \
for (_i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_stop(PERF); \
} \
(PERF)->iterations = _iter; \
}
#define PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL) \
{ \
unsigned long long _i, _iter = (PERF)->iterations; \
unsigned long long _run_total = RUN_TIME; \
_run_total *= UNIT_SCALE; \
_iter = estimate_perf_iterations(PERF, _iter, _run_total); \
(PERF)->iterations = 0; \
perf_start(PERF); \
for (_i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_pause(PERF); \
(PERF)->iterations += _iter; \
\
if (get_base_elapsed(PERF) < _run_total && BENCHMARK_TYPE == BENCHMARK_MIN_TIME) { \
_iter = estimate_perf_iterations(PERF, _iter, \
_run_total - get_base_elapsed(PERF) + \
(UNIT_SCALE / 16)); \
perf_continue(PERF); \
for (_i = 0; _i < _iter; _i++) { \
FUNC_CALL; \
} \
perf_pause(PERF); \
(PERF)->iterations += _iter; \
} \
}
#define BENCHMARK(PERF, RUN_TIME, FUNC_CALL) \
{ \
if ((RUN_TIME) > 0) { \
CALIBRATE(PERF, FUNC_CALL); \
PERFORMANCE_TEST(PERF, RUN_TIME, FUNC_CALL); \
\
} else { \
(PERF)->iterations = 1; \
perf_start(PERF); \
FUNC_CALL; \
perf_stop(PERF); \
} \
}
#ifdef USE_CYCLES
static inline void
perf_print(struct perf p, long long unit_count)
{
long long total_units = p.iterations * unit_count;
printf("runtime = %10lld ticks", get_base_elapsed(&p));
if (total_units != 0) {
printf(", bandwidth %lld MB in %.4f GC = %.2f ticks/byte", total_units / (1000000),
get_time_elapsed(&p), get_base_elapsed(&p) / (double) total_units);
}
printf("\n");
}
#else
static inline void
perf_print(struct perf p, double unit_count)
{
long long total_units = p.iterations * unit_count;
long long usecs = (long long) (get_time_elapsed(&p) * 1000000);
printf("runtime = %10lld usecs", usecs);
if (total_units != 0) {
printf(", bandwidth %lld MB in %.4f sec = %.2f MB/s", total_units / (1000000),
get_time_elapsed(&p),
((double) total_units) / (1000000 * get_time_elapsed(&p)));
}
printf("\n");
}
#endif
static inline uint64_t
get_filesize(FILE *fp)
{
uint64_t file_size;
fpos_t pos, pos_curr;
fgetpos(fp, &pos_curr); /* Save current position */
#if defined(_WIN32) || defined(_WIN64)
_fseeki64(fp, 0, SEEK_END);
#else
fseeko(fp, 0, SEEK_END);
#endif
fgetpos(fp, &pos);
file_size = *(uint64_t *) &pos;
fsetpos(fp, &pos_curr); /* Restore position */
return file_size;
}
#ifdef __cplusplus
}
#endif
#endif // _TEST_H
|