1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
/**********************************************************************
Copyright(c) 2011-2018 Intel Corporation All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**********************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getopt.h>
#include "erasure_code.h" // use <isa-l.h> instead when linking against installed
#include "test.h"
#define MMAX 255
#define KMAX 255
typedef unsigned char u8;
int verbose = 0;
int
usage(void)
{
fprintf(stderr,
"Usage: ec_piggyback_example [options]\n"
" -h Help\n"
" -k <val> Number of source fragments\n"
" -p <val> Number of parity fragments\n"
" -l <val> Length of fragments\n"
" -e <val> Simulate erasure on frag index val. Zero based. Can be repeated.\n"
" -v Verbose\n"
" -b Run timed benchmark\n"
" -s Toggle use of sparse matrix opt\n"
" -r <seed> Pick random (k, p) with seed\n");
exit(0);
}
// Cauchy-based matrix
void
gf_gen_full_pb_cauchy_matrix(u8 *a, int m, int k)
{
int i, j, p = m - k;
// Identity matrix in top k x k to indicate a symmetric code
memset(a, 0, k * m);
for (i = 0; i < k; i++)
a[k * i + i] = 1;
for (i = k; i < (k + p / 2); i++) {
for (j = 0; j < k / 2; j++)
a[k * i + j] = gf_inv(i ^ j);
for (; j < k; j++)
a[k * i + j] = 0;
}
for (; i < m; i++) {
for (j = 0; j < k / 2; j++)
a[k * i + j] = 0;
for (; j < k; j++)
a[k * i + j] = gf_inv((i - p / 2) ^ (j - k / 2));
}
// Fill in mixture of B parity depending on a few localized A sources
int r = 0, c = 0;
int repeat_len = k / (p - 2);
int parity_rows = p / 2;
for (i = 1 + k + parity_rows; i < m; i++, r++) {
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
repeat_len++;
for (j = 0; j < repeat_len; j++, c++)
a[k * i + c] = gf_inv((k + 1) ^ c);
}
}
// Vandermonde based matrix - not recommended due to limits when invertable
void
gf_gen_full_pb_vand_matrix(u8 *a, int m, int k)
{
int i, j, p = m - k;
unsigned char q, gen = 1;
// Identity matrix in top k x k to indicate a symmetric code
memset(a, 0, k * m);
for (i = 0; i < k; i++)
a[k * i + i] = 1;
for (i = k; i < (k + (p / 2)); i++) {
q = 1;
for (j = 0; j < k / 2; j++) {
a[k * i + j] = q;
q = gf_mul(q, gen);
}
for (; j < k; j++)
a[k * i + j] = 0;
gen = gf_mul(gen, 2);
}
gen = 1;
for (; i < m; i++) {
q = 1;
for (j = 0; j < k / 2; j++) {
a[k * i + j] = 0;
}
for (; j < k; j++) {
a[k * i + j] = q;
q = gf_mul(q, gen);
}
gen = gf_mul(gen, 2);
}
// Fill in mixture of B parity depending on a few localized A sources
int r = 0, c = 0;
int repeat_len = k / (p - 2);
int parity_rows = p / 2;
for (i = 1 + k + parity_rows; i < m; i++, r++) {
if (r == (parity_rows - 1) - ((k / 2 % (parity_rows - 1))))
repeat_len++;
for (j = 0; j < repeat_len; j++)
a[k * i + c++] = 1;
}
}
void
print_matrix(int m, int k, unsigned char *s, const char *msg)
{
int i, j;
printf("%s:\n", msg);
for (i = 0; i < m; i++) {
printf("%3d- ", i);
for (j = 0; j < k; j++) {
printf(" %2x", 0xff & s[j + (i * k)]);
}
printf("\n");
}
printf("\n");
}
void
print_list(int n, unsigned char *s, const char *msg)
{
int i;
if (!verbose)
return;
printf("%s: ", msg);
for (i = 0; i < n; i++)
printf(" %d", s[i]);
printf("\n");
}
static int
gf_gen_decode_matrix(u8 *encode_matrix, u8 *decode_matrix, u8 *invert_matrix, u8 *temp_matrix,
u8 *decode_index, u8 *frag_err_list, int nerrs, int k, int m);
int
main(int argc, char *argv[])
{
int i, j, m, c, e, ret;
int k = 10, p = 4, len = 8 * 1024; // Default params
int nerrs = 0;
int benchmark = 0;
int sparse_matrix_opt = 1;
// Fragment buffer pointers
u8 *frag_ptrs[MMAX];
u8 *parity_ptrs[KMAX];
u8 *recover_srcs[KMAX];
u8 *recover_outp[KMAX];
u8 frag_err_list[MMAX];
// Coefficient matrices
u8 *encode_matrix, *decode_matrix;
u8 *invert_matrix, *temp_matrix;
u8 *g_tbls;
u8 decode_index[MMAX];
if (argc == 1)
for (i = 0; i < p; i++)
frag_err_list[nerrs++] = rand() % (k + p);
while ((c = getopt(argc, argv, "k:p:l:e:r:hvbs")) != -1) {
switch (c) {
case 'k':
k = atoi(optarg);
break;
case 'p':
p = atoi(optarg);
break;
case 'l':
len = atoi(optarg);
if (len < 0)
usage();
break;
case 'e':
e = atoi(optarg);
frag_err_list[nerrs++] = e;
break;
case 'r':
srand(atoi(optarg));
k = (rand() % MMAX) / 4;
k = (k < 2) ? 2 : k;
p = (rand() % (MMAX - k)) / 4;
p = (p < 2) ? 2 : p;
for (i = 0; i < k && nerrs < p; i++)
if (rand() & 1)
frag_err_list[nerrs++] = i;
break;
case 'v':
verbose++;
break;
case 'b':
benchmark = 1;
break;
case 's':
sparse_matrix_opt = !sparse_matrix_opt;
break;
case 'h':
default:
usage();
break;
}
}
m = k + p;
// Check for valid parameters
if (m > (MMAX / 2) || k > (KMAX / 2) || m < 0 || p < 2 || k < 1) {
printf(" Input test parameter error m=%d, k=%d, p=%d, erasures=%d\n", m, k, p,
nerrs);
usage();
}
if (nerrs > p) {
printf(" Number of erasures chosen exceeds power of code erasures=%d p=%d\n", nerrs,
p);
}
for (i = 0; i < nerrs; i++) {
if (frag_err_list[i] >= m)
printf(" fragment %d not in range\n", frag_err_list[i]);
}
printf("ec_piggyback_example:\n");
/*
* One simple way to implement piggyback codes is to keep a 2x wide matrix
* that covers the how each parity is related to both A and B sources. This
* keeps it easy to generalize in parameters m,k and the resulting sparse
* matrix multiplication can be optimized by pre-removal of zero items.
*/
int k2 = 2 * k;
int p2 = 2 * p;
int m2 = k2 + p2;
int nerrs2 = nerrs;
encode_matrix = malloc(m2 * k2);
decode_matrix = malloc(m2 * k2);
invert_matrix = malloc(m2 * k2);
temp_matrix = malloc(m2 * k2);
g_tbls = malloc(k2 * p2 * 32);
if (encode_matrix == NULL || decode_matrix == NULL || invert_matrix == NULL ||
temp_matrix == NULL || g_tbls == NULL) {
printf("Test failure! Error with malloc\n");
return -1;
}
// Allocate the src fragments
for (i = 0; i < k; i++) {
if (NULL == (frag_ptrs[i] = malloc(len))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Allocate the parity fragments
for (i = 0; i < p2; i++) {
if (NULL == (parity_ptrs[i] = malloc(len / 2))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Allocate buffers for recovered data
for (i = 0; i < p2; i++) {
if (NULL == (recover_outp[i] = malloc(len / 2))) {
printf("alloc error: Fail\n");
return -1;
}
}
// Fill sources with random data
for (i = 0; i < k; i++)
for (j = 0; j < len; j++)
frag_ptrs[i][j] = rand();
printf(" encode (m,k,p)=(%d,%d,%d) len=%d\n", m, k, p, len);
// Pick an encode matrix.
gf_gen_full_pb_cauchy_matrix(encode_matrix, m2, k2);
if (verbose)
print_matrix(m2, k2, encode_matrix, "encode matrix");
// Initialize g_tbls from encode matrix
ec_init_tables(k2, p2, &encode_matrix[k2 * k2], g_tbls);
// Fold A and B into single list of fragments
for (i = 0; i < k; i++)
frag_ptrs[i + k] = &frag_ptrs[i][len / 2];
if (!sparse_matrix_opt) {
// Standard encode using no assumptions on the encode matrix
// Generate EC parity blocks from sources
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs, parity_ptrs);
if (benchmark) {
struct perf start;
BENCHMARK(&start, BENCHMARK_TIME,
ec_encode_data(len / 2, k2, p2, g_tbls, frag_ptrs, parity_ptrs));
printf("ec_piggyback_encode_std: ");
perf_print(start, m2 * len / 2);
}
} else {
// Sparse matrix optimization - use fact that input matrix is sparse
// Keep an encode matrix with some zero elements removed
u8 *encode_matrix_faster, *g_tbls_faster;
encode_matrix_faster = malloc(m * k);
g_tbls_faster = malloc(k * p * 32);
if (encode_matrix_faster == NULL || g_tbls_faster == NULL) {
printf("Test failure! Error with malloc\n");
return -1;
}
/*
* Pack with only the part that we know are non-zero. Alternatively
* we could search and keep track of non-zero elements but for
* simplicity we just skip the lower quadrant.
*/
for (i = k, j = k2; i < m; i++, j++)
memcpy(&encode_matrix_faster[k * i], &encode_matrix[k2 * j], k);
if (verbose) {
print_matrix(p, k, &encode_matrix_faster[k * k], "encode via sparse-opt");
print_matrix(p2 / 2, k2, &encode_matrix[(k2 + p2 / 2) * k2],
"encode via sparse-opt");
}
// Initialize g_tbls from encode matrix
ec_init_tables(k, p, &encode_matrix_faster[k * k], g_tbls_faster);
// Generate EC parity blocks from sources
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs, parity_ptrs);
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs, &parity_ptrs[p]);
if (benchmark) {
struct perf start;
BENCHMARK(&start, BENCHMARK_TIME,
ec_encode_data(len / 2, k, p, g_tbls_faster, frag_ptrs,
parity_ptrs);
ec_encode_data(len / 2, k2, p, &g_tbls[k2 * p * 32], frag_ptrs,
&parity_ptrs[p]));
printf("ec_piggyback_encode_sparse: ");
perf_print(start, m2 * len / 2);
}
}
if (nerrs <= 0)
return 0;
printf(" recover %d fragments\n", nerrs);
// Set frag pointers to correspond to parity
for (i = k2; i < m2; i++)
frag_ptrs[i] = parity_ptrs[i - k2];
print_list(nerrs2, frag_err_list, " frag err list");
// Find a decode matrix to regenerate all erasures from remaining frags
ret = gf_gen_decode_matrix(encode_matrix, decode_matrix, invert_matrix, temp_matrix,
decode_index, frag_err_list, nerrs2, k2, m2);
if (ret != 0) {
printf("Fail on generate decode matrix\n");
return -1;
}
// Pack recovery array pointers as list of valid fragments
for (i = 0; i < k2; i++)
if (decode_index[i] < k2)
recover_srcs[i] = frag_ptrs[decode_index[i]];
else
recover_srcs[i] = parity_ptrs[decode_index[i] - k2];
print_list(k2, decode_index, " decode index");
// Recover data
ec_init_tables(k2, nerrs2, decode_matrix, g_tbls);
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs, recover_outp);
if (benchmark) {
struct perf start;
BENCHMARK(&start, BENCHMARK_TIME,
ec_encode_data(len / 2, k2, nerrs2, g_tbls, recover_srcs, recover_outp));
printf("ec_piggyback_decode: ");
perf_print(start, (k2 + nerrs2) * len / 2);
}
// Check that recovered buffers are the same as original
printf(" check recovery of block {");
for (i = 0; i < nerrs2; i++) {
printf(" %d", frag_err_list[i]);
if (memcmp(recover_outp[i], frag_ptrs[frag_err_list[i]], len / 2)) {
printf(" Fail erasure recovery %d, frag %d\n", i, frag_err_list[i]);
return -1;
}
}
printf(" } done all: Pass\n");
return 0;
}
// Generate decode matrix from encode matrix and erasure list
static int
gf_gen_decode_matrix(u8 *encode_matrix, u8 *decode_matrix, u8 *invert_matrix, u8 *temp_matrix,
u8 *decode_index, u8 *frag_err_list, int nerrs, int k, int m)
{
int i, j, p, r;
int nsrcerrs = 0;
u8 s, *b = temp_matrix;
u8 frag_in_err[MMAX];
memset(frag_in_err, 0, sizeof(frag_in_err));
// Order the fragments in erasure for easier sorting
for (i = 0; i < nerrs; i++) {
if (frag_err_list[i] < k)
nsrcerrs++;
frag_in_err[frag_err_list[i]] = 1;
}
// Construct b (matrix that encoded remaining frags) by removing erased rows
for (i = 0, r = 0; i < k; i++, r++) {
while (frag_in_err[r])
r++;
for (j = 0; j < k; j++)
b[k * i + j] = encode_matrix[k * r + j];
decode_index[i] = r;
}
if (verbose > 1)
print_matrix(k, k, b, "matrix to invert");
// Invert matrix to get recovery matrix
if (gf_invert_matrix(b, invert_matrix, k) < 0)
return -1;
if (verbose > 2)
print_matrix(k, k, invert_matrix, "matrix inverted");
// Get decode matrix with only wanted recovery rows
for (i = 0; i < nsrcerrs; i++) {
for (j = 0; j < k; j++) {
decode_matrix[k * i + j] = invert_matrix[k * frag_err_list[i] + j];
}
}
// For non-src (parity) erasures need to multiply encode matrix * invert
for (p = nsrcerrs; p < nerrs; p++) {
for (i = 0; i < k; i++) {
s = 0;
for (j = 0; j < k; j++)
s ^= gf_mul(invert_matrix[j * k + i],
encode_matrix[k * frag_err_list[p] + j]);
decode_matrix[k * p + i] = s;
}
}
if (verbose > 1)
print_matrix(nerrs, k, decode_matrix, "decode matrix");
return 0;
}
|