1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
/*!
* \file
* \brief Definitions of LU factorisation functions
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef LU_H
#define LU_H
#include <itpp/base/mat.h>
namespace itpp {
/*! \addtogroup matrixdecomp
*/
//!@{
/*!
\brief LU factorisation of real matrix
The LU factorization of the real matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
by
\f[
\mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
\f]
where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
and \f$\mathbf{P}\f$ is a permutation matrix.
The interchange permutation vector \a p is such that \a k and \a p(k) should be
changed for all \a k. Given this vector a permutation matrix can be constructed using the
function
\code
bmat permutation_matrix(const ivec &p)
\endcode
If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
\a L is a lower triangular, \a U an upper triangular matrix.
\a p is the interchange permutation vector such that \a k and \a p(k) should be
changed for all \a k.
Returns true is calculation succeeds. False otherwise.
*/
bool lu(const mat &X, mat &L, mat &U, ivec &p);
/*!
\brief LU factorisation of real matrix
The LU factorization of the complex matrix \f$\mathbf{X}\f$ of size \f$n \times n\f$ is given
by
\f[
\mathbf{X} = \mathbf{P}^T \mathbf{L} \mathbf{U} ,
\f]
where \f$\mathbf{L}\f$ and \f$\mathbf{U}\f$ are lower and upper triangular matrices
and \f$\mathbf{P}\f$ is a permutation matrix.
The interchange permutation vector \a p is such that \a k and \a p(k) should be
changed for all \a k. Given this vector a permutation matrix can be constructed using the
function
\code
bmat permutation_matrix(const ivec &p)
\endcode
If \a X is an \a n by \a n matrix \a lu(X,L,U,p) computes the LU decomposition.
\a L is a lower triangular, \a U an upper triangular matrix.
\a p is the interchange permutation vector such that elements \a k and row \a p(k) should be
interchanged.
Returns true is calculation succeeds. False otherwise.
*/
bool lu(const cmat &X, cmat &L, cmat &U, ivec &p);
//! Makes swapping of vector b according to the interchange permutation vector p.
void interchange_permutations(vec &b, const ivec &p);
//! Make permutation matrix P from the interchange permutation vector p.
bmat permutation_matrix(const ivec &p);
//!@}
} // namespace itpp
#endif // #ifndef LU_H
|