1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*!
* \file
* \brief Definitions of Bessel functions
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*/
#ifndef BESSEL_H
#define BESSEL_H
#include <itpp/base/vec.h>
namespace itpp {
/*! \addtogroup besselfunctions
*/
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu for \a nu integer
The bessel function of first kind is defined as:
\f[
J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k}
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
double besselj(int nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu for \a nu integer
*/
vec besselj(int nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu. \a nu is real.
*/
double besselj(double nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of first kind of order \a nu. \a nu is real.
*/
vec besselj(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is integer.
The Bessel function of second kind is defined as:
\f[
Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
double bessely(int nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is integer.
*/
vec bessely(int nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is real.
*/
double bessely(double nu, double x);
/*!
\ingroup besselfunctions
\brief Bessel function of second kind of order \a nu. \a nu is real.
*/
vec bessely(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
The Modified Bessel function of first kind is defined as:
\f[
I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
double besseli(double nu, double x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
*/
vec besseli(double nu, const vec &x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
The Modified Bessel function of second kind is defined as:
\f[
K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)]
\f]
where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
*/
double besselk(int nu, double x);
/*!
\ingroup besselfunctions
\brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
*/
vec besselk(int nu, const vec &x);
} //namespace itpp
#endif // #ifndef BESSEL_H
|