File: bessel.h

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (139 lines) | stat: -rw-r--r-- 4,125 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*!
 * \file
 * \brief Definitions of Bessel functions
 * \author Tony Ottosson
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#ifndef BESSEL_H
#define BESSEL_H

#include <itpp/base/vec.h>


namespace itpp {

  /*! \addtogroup besselfunctions
   */

  /*!
    \ingroup besselfunctions
    \brief Bessel function of first kind of order \a nu for \a nu integer

    The bessel function of first kind is defined as:
    \f[
    J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{ (-1)^{k} }{k! \Gamma(\nu+k+1) } \left(\frac{x}{2}\right)^{\nu+2k}
    \f]
    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
  */
  double besselj(int nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of first kind of order \a nu for \a nu integer
  */
  vec besselj(int nu, const vec &x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of first kind of order \a nu. \a nu is real.
  */
  double besselj(double nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of first kind of order \a nu. \a nu is real.
  */
  vec besselj(double nu, const vec &x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of second kind of order \a nu. \a nu is integer.

    The Bessel function of second kind is defined as:
    \f[
    Y_{\nu}(x) = \frac{J_{\nu}(x) \cos(\nu\pi) - J_{-\nu}(x)}{\sin(\nu\pi)}
    \f]
    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
  */
  double bessely(int nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of second kind of order \a nu. \a nu is integer.
  */
  vec bessely(int nu, const vec &x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of second kind of order \a nu. \a nu is real.
  */
  double bessely(double nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Bessel function of second kind of order \a nu. \a nu is real.
  */
  vec bessely(double nu, const vec &x);

  /*!
    \ingroup besselfunctions
    \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.

    The Modified Bessel function of first kind is defined as:
    \f[
    I_{\nu}(x) = i^{-\nu} J_{\nu}(ix)
    \f]
    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
  */
  double besseli(double nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Modified Bessel function of first kind of order \a nu. \a nu is \a double. \a x is \a double.
  */
  vec besseli(double nu, const vec &x);

  /*!
    \ingroup besselfunctions
    \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.

    The Modified Bessel function of second kind is defined as:
    \f[
    K_{\nu}(x) = \frac{\pi}{2} i^{\nu+1} [J_{\nu}(ix) + i Y_{\nu}(ix)]
    \f]
    where \f$\nu\f$ is the order and \f$ 0 < x < \infty \f$.
  */
  double besselk(int nu, double x);

  /*!
    \ingroup besselfunctions
    \brief Modified Bessel function of second kind of order \a nu. \a nu is double. \a x is double.
  */
  vec besselk(int nu, const vec &x);

} //namespace itpp

#endif // #ifndef BESSEL_H