1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*!
* \file
* \brief Implementation of modified Bessel functions of noninteager order
* \author Tony Ottosson
*
* -------------------------------------------------------------------------
*
* IT++ - C++ library of mathematical, signal processing, speech processing,
* and communications classes and functions
*
* Copyright (C) 1995-2008 (see AUTHORS file for a list of contributors)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* -------------------------------------------------------------------------
*
* This is slightly modified routine from the Cephes library:
* http://www.netlib.org/cephes/
*/
#include <itpp/base/bessel/bessel_internal.h>
#include <itpp/base/itassert.h>
/*
* Modified Bessel function of noninteger order
*
* double v, x, y, iv();
*
* y = iv( v, x );
*
* DESCRIPTION:
*
* Returns modified Bessel function of order v of the
* argument. If x is negative, v must be integer valued.
*
* The function is defined as Iv(x) = Jv( ix ). It is
* here computed in terms of the confluent hypergeometric
* function, according to the formula
*
* v -x
* Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
*
* If v is a negative integer, then v is replaced by -v.
*
*
* ACCURACY:
*
* Tested at random points (v, x), with v between 0 and
* 30, x between 0 and 28.
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0,30 10000 1.7e-14 2.7e-15
*
* Accuracy is diminished if v is near a negative integer.
*
* See also hyperg.c.
*/
/* Mdified Bessel function of noninteger order */
/* If x < 0, then v must be an integer. */
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
*/
#define MAXNUM 1.79769313486231570815E308 /* 2**1024*(1-MACHEP) */
double iv(double v, double x)
{
int sign;
double t, ax;
/* If v is a negative integer, invoke symmetry */
t = floor(v);
if( v < 0.0 )
{
if( t == v )
{
v = -v; /* symmetry */
t = -t;
}
}
/* If x is negative, require v to be an integer */
sign = 1;
if( x < 0.0 )
{
if( t != v )
{
it_warning("iv(): argument domain error");
return( 0.0 );
}
if( v != 2.0 * floor(v/2.0) )
sign = -1;
}
/* Avoid logarithm singularity */
if( x == 0.0 )
{
if( v == 0.0 )
return( 1.0 );
if( v < 0.0 )
{
it_warning("iv(): overflow range error");
return( MAXNUM );
}
else
return( 0.0 );
}
ax = fabs(x);
t = v * log( 0.5 * ax ) - x;
t = sign * exp(t) / gam( v + 1.0 );
ax = v + 0.5;
return( t * hyperg( ax, 2.0 * ax, 2.0 * x ) );
}
|