File: mat.h

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (2056 lines) | stat: -rw-r--r-- 69,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
/*!
 * \file
 * \brief Matrix Class Definitions
 * \author Tony Ottosson, Tobias Ringstrom, Adam Piatyszek and Conrad Sanderson
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#ifndef MAT_H
#define MAT_H

#ifndef _MSC_VER
#  include <itpp/config.h>
#else
#  include <itpp/config_msvc.h>
#endif

#include <itpp/base/itassert.h>
#include <itpp/base/math/misc.h>
#include <itpp/base/factory.h>


namespace itpp {

  // Declaration of Vec
  template<class Num_T> class Vec;
  // Declaration of Mat
  template<class Num_T> class Mat;
  // Declaration of bin
  class bin;

  //! Horizontal concatenation of two matrices
  template<class Num_T>
  Mat<Num_T> concat_horizontal(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Vertical concatenation of two matrices
  template<class Num_T>
  Mat<Num_T> concat_vertical(const Mat<Num_T> &m1, const Mat<Num_T> &m2);

  //! Addition of two matrices
  template<class Num_T>
  Mat<Num_T> operator+(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Addition of a matrix and a scalar
  template<class Num_T>
  Mat<Num_T> operator+(const Mat<Num_T> &m, Num_T t);
  //! Addition of a scalar and a matrix
  template<class Num_T>
  Mat<Num_T> operator+(Num_T t, const Mat<Num_T> &m);

  //! Subtraction of two matrices
  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Subtraction of matrix and scalar
  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m, Num_T t);
  //! Subtraction of scalar and matrix
  template<class Num_T>
  Mat<Num_T> operator-(Num_T t, const Mat<Num_T> &m);
  //! Negation of matrix
  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m);

  //! Multiplication of two matrices
  template<class Num_T>
  Mat<Num_T> operator*(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Multiplication of matrix and vector
  template<class Num_T>
  Vec<Num_T> operator*(const Mat<Num_T> &m, const Vec<Num_T> &v);
  //! Multiplication of vector and matrix (matrix must be a row vector)
  template<class Num_T>
  Mat<Num_T> operator*(const Vec<Num_T> &v, const Mat<Num_T> &m);
  //! Multiplication of matrix and scalar
  template<class Num_T>
  Mat<Num_T> operator*(const Mat<Num_T> &m, Num_T t);
  //! Multiplication of scalar and matrix
  template<class Num_T>
  Mat<Num_T> operator*(Num_T t, const Mat<Num_T> &m);

  //! Element wise multiplication of two matrices
  template<class Num_T>
  Mat<Num_T> elem_mult(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Element wise multiplication of two matrices, storing the result in matrix \c out
  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     Mat<Num_T> &out);
  //! Element wise multiplication of three matrices, storing the result in matrix \c out
  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     const Mat<Num_T> &m3, Mat<Num_T> &out);
  //! Element wise multiplication of four matrices, storing the result in matrix \c out
  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     const Mat<Num_T> &m3, const Mat<Num_T> &m4,
                     Mat<Num_T> &out);
  //! In-place element wise multiplication of two matrices. Fast version of B = elem_mult(A, B).
  template<class Num_T>
  void elem_mult_inplace(const Mat<Num_T> &m1, Mat<Num_T> &m2);
  //! Element wise multiplication of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_mult(A, B)).
  template<class Num_T>
  Num_T elem_mult_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2);

  //! Division of matrix and scalar
  template<class Num_T>
  Mat<Num_T> operator/(const Mat<Num_T> &m, Num_T t);

  //! Element wise division of two matrices
  template<class Num_T>
  Mat<Num_T> elem_div(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
  //! Element wise division of two matrices, storing the result in matrix \c out
  template<class Num_T>
  void elem_div_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                    Mat<Num_T> &out);
  //! Element wise division of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_div(A, B)).
  template<class Num_T>
  Num_T elem_div_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2);

  // -------------------------------------------------------------------------------------
  // Declaration of Mat
  // -------------------------------------------------------------------------------------

  /*!
    \ingroup arr_vec_mat
    \brief Matrix Class (Templated)
    \author Tony Ottosson, Tobias Ringstrom, Adam Piatyszek and Conrad Sanderson

    Matrices can be of arbitrarily types, but conversions and functions are
    prepared for \c bin, \c short, \c int, \c double, and \c complex<double>
    vectors and these are predefined as: \c bmat, \c smat, \c imat, \c mat,
    and \c cmat. \c double and \c complex<double> are usually \c double and
    \c complex<double> respectively. However, this can be changed when
    compiling the it++ (see installation notes for more details). (Note: for
    binary matrices, an alternative to the bmat class is \c GF2mat and
    \c GF2mat_dense, which offer a more memory efficient representation and
    additional functions for linear algebra.)

    Examples:

    Matrix Constructors:
    When constructing a matrix without dimensions (memory) use
    \code mat temp; \endcode
    For construction of a matrix of a given size use
    \code mat temp(rows, cols); \endcode
    It is also possible to assign the constructed matrix the value and dimension
    of another matrix by
    \code vec temp(inmatrix); \endcode
    If you have explicit values you would like to assign to the matrix it is
    possible to do this using strings as:
    \code
    mat a("0 0.7;5 9.3"); // that is a = [0, 0.7; 5, 9.3]
    mat a="0 0.7;5 9.3";  // the constructor are called implicitly
    \endcode
    It is also possible to change dimension by
    \code temp.set_size(new_rows, new_cols, false); \endcode
    where \c false is used to indicate that the old values in \c temp
    is not copied. If you like to preserve the values use \c true.

    There are a number of methods to access parts of a matrix. Examples are
    \code
    a(5,3);     // Element number (5,3)
    a(5,9,3,5);  // Sub-matrix from rows 5, 6, 7, 8, 9 the columns 3, 4, and 5
    a.get_row(10);  // Row 10
    a.get_col(10); // Column 10
    \endcode

    It is also possible to modify parts of a vector as e.g. in
    \code
    a.set_row(5, invector);    // Set row 5 to \c invector
    a.set_col(3, invector); // Set column 3 to \c invector
    a.copy_col(1, 5); // Copy column 5 to column 1
    a.swap_cols(1, 5); // Swap the contents of columns 1 and 5
    \endcode

    It is of course also possible to perform the common linear algebra
    methods such as addition, subtraction, and matrix multiplication. Observe
    though, that vectors are assumed to be column-vectors in operations with
    matrices.

    Most elementary functions such as sin(), cosh(), log(), abs(), ..., are
    available as operations on the individual elements of the matrices. Please
    see the individual functions for more details.

    By default, the Mat elements are created using the default constructor for
    the element type. This can be changed by specifying a suitable Factory in
    the Mat constructor call; see Detailed Description for Factory.
  */
  template<class Num_T>
  class Mat {
  public:
    //! The type of the matrix values
    typedef Num_T value_type;

    //! Default constructor. An element factory \c f can be specified
    explicit Mat(const Factory &f = DEFAULT_FACTORY);
    //! Create a matrix of size (rows, cols). An element factory \c f can be specified.
    Mat(int rows, int cols, const Factory &f = DEFAULT_FACTORY);
    //! Copy constructor
    Mat(const Mat<Num_T> &m);
    //! Constructor, similar to the copy constructor, but also takes an element factory \c f as argument
    Mat(const Mat<Num_T> &m, const Factory &f);
    //! Construct a matrix from a column vector \c v. An element factory \c f can be specified.
    Mat(const Vec<Num_T> &v, const Factory &f = DEFAULT_FACTORY);
    //! Set matrix equal to values in string \c str. An element factory \c f can be specified.
    Mat(const std::string &str, const Factory &f = DEFAULT_FACTORY);
    //! Set matrix equal to values in string \c str. An element factory \c f can be specified.
    Mat(const char *str, const Factory &f = DEFAULT_FACTORY);
    /*!
     * \brief Constructor taking a C-array as input. An element factory \c f
     * can be specified.
     *
     * By default the matrix is stored as a row-major matrix (i.e. listing
     * elements in sequence beginning with the first column).
     */
    Mat(const Num_T *c_array, int rows, int cols, bool row_major = true,
        const Factory &f = DEFAULT_FACTORY);

    //! Destructor
    ~Mat();

    //! The number of columns
    int cols() const { return no_cols; }
    //! The number of rows
    int rows() const { return no_rows; }
    //! The number of elements
    int size() const { return datasize; }
    //! Set size of matrix. If copy = true then keep the data before resizing.
    void set_size(int rows, int cols, bool copy = false);
    //! Set matrix equal to the all zero matrix
    void zeros();
    //! Set matrix equal to the all zero matrix
    void clear() { zeros(); }
    //! Set matrix equal to the all one matrix
    void ones();
    //! Set matrix equal to values in \c values
    void set(const char *str);
    //! Set matrix equal to values in the string \c str
    void set(const std::string &str);

    //! Get element (r,c) from matrix
    const Num_T &operator()(int r, int c) const;
    //! Get element (r,c) from matrix
    Num_T &operator()(int r, int c);
    //! Get element \c i using linear addressing (by rows)
    const Num_T &operator()(int i) const;
    //! Get element \c i using linear addressing (by rows)
    Num_T &operator()(int i);
    //! Get element (r,c) from matrix
    const Num_T &get(int r, int c) const;
    //! Set element (r,c) of matrix
    void set(int r, int c, Num_T t);

    /*!
      \brief Sub-matrix from row \c r1 to row \c r2 and columns \c c1 to \c c2.

      Value -1 indicates the last row and column, respectively.
    */
    Mat<Num_T> operator()(int r1, int r2, int c1, int c2) const;
    /*!
      \brief Sub-matrix from row \c r1 to row \c r2 and columns \c c1 to \c c2.

      Value -1 indicates the last row and column, respectively.
    */
    Mat<Num_T> get(int r1, int r2, int c1, int c2) const;

    //! Get row \c r
    Vec<Num_T> get_row(int r) const;
    //! Get rows \c r1 through \c r2
    Mat<Num_T> get_rows(int r1, int r2) const;
    //! Get the rows specified by \c indexlist
    Mat<Num_T> get_rows(const Vec<int> &indexlist) const;
    //! Get column \c c
    Vec<Num_T> get_col(int c) const;
    //! Get columns \c c1 through \c c2
    Mat<Num_T> get_cols(int c1, int c2) const;
    //! Get the columns specified by \c indexlist
    Mat<Num_T> get_cols(const Vec<int> &indexlist) const;
    //! Set row \c r to vector \c v
    void set_row(int r, const Vec<Num_T> &v);
    //! Set column \c c to vector \c v
    void set_col(int c, const Vec<Num_T> &v);
    //! Set rows to matrix \c m, staring from row \c r
    void set_rows(int r, const Mat<Num_T> &m);
    //! Set columns to matrix \c m, starting from column \c c
    void set_cols(int c, const Mat<Num_T> &m);
    //! Copy row \c from onto row \c to
    void copy_row(int to, int from);
    //! Copy column \c from onto column \c to
    void copy_col(int to, int from);
    //! Swap the rows \c r1 and \c r2
    void swap_rows(int r1, int r2);
    //! Swap the columns \c c1 and \c c2
    void swap_cols(int c1, int c2);

    //! Set submatrix defined by rows r1,r2 and columns c1,c2 to matrix m
    void set_submatrix(int r1, int r2, int c1, int c2, const Mat<Num_T> &m);
    //! Set submatrix defined by upper-left element (r,c) and the size of matrix m to m
    void set_submatrix(int r, int c, const Mat<Num_T> &m);
    //! Set all elements of submatrix defined by rows r1,r2 and columns c1,c2 to value t
    void set_submatrix(int r1, int r2, int c1, int c2, Num_T t);

    //! Delete row number \c r
    void del_row(int r);
    //! Delete rows from \c r1 to \c r2
    void del_rows(int r1, int r2);
    //! Delete column number \c c
    void del_col(int c);
    //! Delete columns from \c c1 to \c c2
    void del_cols(int c1, int c2);
    //! Insert vector \c v at row number \c r. The matrix can be empty.
    void ins_row(int r, const Vec<Num_T> &v);
    //! Insert vector \c v at column number \c c. The matrix can be empty.
    void ins_col(int c, const Vec<Num_T> &v);
    //! Append vector \c v to the bottom of the matrix. The matrix can be empty.
    void append_row(const Vec<Num_T> &v);
    //! Append vector \c v to the right side of the matrix. The matrix can be empty.
    void append_col(const Vec<Num_T> &v);

    //! Matrix transpose
    Mat<Num_T> transpose() const;
    //! Matrix transpose
    Mat<Num_T> T() const { return this->transpose(); }
    //! Hermitian matrix transpose (conjugate transpose)
    Mat<Num_T> hermitian_transpose() const;
    //! Hermitian matrix transpose (conjugate transpose)
    Mat<Num_T> H() const { return this->hermitian_transpose(); }

    //! Concatenate the matrices \c m1 and \c m2 horizontally
    friend Mat<Num_T> concat_horizontal<>(const Mat<Num_T> &m1,
                                          const Mat<Num_T> &m2);
    //! Concatenate the matrices \c m1 and \c m2 vertically
    friend Mat<Num_T> concat_vertical<>(const Mat<Num_T> &m1,
                                        const Mat<Num_T> &m2);

    //! Set all elements of the matrix equal to \c t
    Mat<Num_T>& operator=(Num_T t);
    //! Set matrix equal to \c m
    Mat<Num_T>& operator=(const Mat<Num_T> &m);
    //! Set matrix equal to the vector \c v, assuming column vector
    Mat<Num_T>& operator=(const Vec<Num_T> &v);
    //! Set matrix equal to values in the string
    Mat<Num_T>& operator=(const char *str);

    //! Addition of matrices
    Mat<Num_T>& operator+=(const Mat<Num_T> &m);
    //! Addition of scalar to matrix
    Mat<Num_T>& operator+=(Num_T t);
    //! Addition of two matrices
    friend Mat<Num_T> operator+<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
    //! Addition of matrix and scalar
    friend Mat<Num_T> operator+<>(const Mat<Num_T> &m, Num_T t);
    //! Addition of scalar and matrix
    friend Mat<Num_T> operator+<>(Num_T t, const Mat<Num_T> &m);

    //! Subtraction of matrix
    Mat<Num_T>& operator-=(const Mat<Num_T> &m);
    //! Subtraction of scalar from matrix
    Mat<Num_T>& operator-=(Num_T t);
    //! Subtraction of \c m2 from \c m1
    friend Mat<Num_T> operator-<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
    //! Subtraction of scalar from matrix
    friend Mat<Num_T> operator-<>(const Mat<Num_T> &m, Num_T t);
    //! Subtract matrix from scalar
    friend Mat<Num_T> operator-<>(Num_T t, const Mat<Num_T> &m);
    //! Subtraction of matrix
    friend Mat<Num_T> operator-<>(const Mat<Num_T> &m);

    //! Matrix multiplication
    Mat<Num_T>& operator*=(const Mat<Num_T> &m);
    //! Multiplication by a scalar
    Mat<Num_T>& operator*=(Num_T t);
    //! Multiplication of two matrices
    friend Mat<Num_T> operator*<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
    //! Multiplication of matrix \c m and vector \c v (column vector)
    friend Vec<Num_T> operator*<>(const Mat<Num_T> &m, const Vec<Num_T> &v);
    /*!
     * \brief Multiplication of vector \c v and matrix \c m with only one row
     *
     * This operator multiplies a column vector \c v times matrix \c m that
     * consists of only one row. Thus, the result of this operator is
     * exactly the same as the result of the outer product of two vectors,
     * i.e.: <tt>outer_product(v, m.get_col(0))</tt>.
     *
     * \note This operator is deprecated and might be removed or changed in
     * future releases of IT++.
     */
    friend Mat<Num_T> operator*<>(const Vec<Num_T> &v, const Mat<Num_T> &m);
    //! Multiplication of matrix and scalar
    friend Mat<Num_T> operator*<>(const Mat<Num_T> &m, Num_T t);
    //! Multiplication of scalar and matrix
    friend Mat<Num_T> operator*<>(Num_T t, const Mat<Num_T> &m);

    //! Element wise multiplication of two matrices
    friend Mat<Num_T> elem_mult<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
    //! Element wise multiplication of two matrices, storing the result in matrix \c out
    friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                                Mat<Num_T> &out);
    //! Element wise multiplication of three matrices, storing the result in matrix \c out
    friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                                const Mat<Num_T> &m3, Mat<Num_T> &out);
    //! Element wise multiplication of four matrices, storing the result in matrix \c out
    friend void elem_mult_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                                const Mat<Num_T> &m3, const Mat<Num_T> &m4,
                                Mat<Num_T> &out);
    //! In-place element wise multiplication of two matrices. Fast version of B = elem_mult(A, B).
    friend void elem_mult_inplace<>(const Mat<Num_T> &m1, Mat<Num_T> &m2);
    //! Element wise multiplication of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_mult(A, B)).
    friend Num_T elem_mult_sum<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);

    //! Division by a scalar
    Mat<Num_T>& operator/=(Num_T t);
    //! Division of matrix with scalar
    friend Mat<Num_T> operator/<>(const Mat<Num_T> &m, Num_T t);
    //! Element-wise division with the current matrix
    Mat<Num_T>& operator/=(const Mat<Num_T> &m);

    //! Element wise division of two matrices
    friend Mat<Num_T> elem_div<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);
    //! Element wise division of two matrices, storing the result in matrix \c out
    friend void elem_div_out<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                               Mat<Num_T> &out);
    //! Element wise division of two matrices, followed by summation of the resultant elements. Fast version of sumsum(elem_div(A, B)).
    friend Num_T elem_div_sum<>(const Mat<Num_T> &m1, const Mat<Num_T> &m2);

    //! Compare two matrices. False if wrong sizes or different values
    bool operator==(const Mat<Num_T> &m) const;
    //! Compare two matrices. True if different
    bool operator!=(const Mat<Num_T> &m) const;

    //! Get element (r,c) from matrix without boundary check (not recommended to use)
    Num_T &_elem(int r, int c) { return data[r+c*no_rows]; }
    //! Get element (r,c) from matrix without boundary check (not recommended to use)
    const Num_T &_elem(int r, int c) const { return data[r+c*no_rows]; }
    //! Get element \c i using linear addressing (by rows) without boundary check (not recommended to use)
    Num_T &_elem(int i) { return data[i]; }
    //! Get element \c i using linear addressing (by rows) without boundary check (not recommended to use)
    const Num_T &_elem(int i) const { return data[i]; }

    //! Access of the internal data structure (not recommended to use)
    Num_T *_data() { return data; }
    //! Access to the internal data structure (not recommended to use)
    const Num_T *_data() const { return data; }
    //! Access to the internal data structure (not recommended to use)
    int _datasize() const { return datasize; }

  protected:
    //! Allocate memory for the matrix
    void alloc(int rows, int cols);
    //! Free the memory space of the matrix
    void free();

    /*! Protected integer variables
     * @{ */
    int datasize, no_rows, no_cols;
    /*! @} */
    //! Protected data pointer
    Num_T *data;
    //! Element factory (set to DEFAULT_FACTORY to use Num_T default constructors only)
    const Factory &factory;

  private:
    //! Check whether element (r,c) is within the matrix
    bool in_range(int r, int c) const
    {
      return ((r >=0) && (r < no_rows) && (c >= 0) && (c < no_cols));
    }
    //! Check whether row \c r is in the allowed range
    bool row_in_range(int r) const { return ((r >= 0) && (r < no_rows)); }
    //! Check whether column \c c is in the allowed range
    bool col_in_range(int c) const { return ((c >= 0) && (c < no_cols)); }
    //! Check whether element \c i is in the allowed range
    bool in_range(int i) const { return ((i >= 0) && (i < datasize)); }
  };

  // -------------------------------------------------------------------------------------
  // Type definitions of mat, cmat, imat, smat, and bmat
  // -------------------------------------------------------------------------------------

  /*!
    \relates Mat
    \brief Default Matrix Type
  */
  typedef Mat<double> mat;

  /*!
    \relates Mat
    \brief Default Complex Matrix Type
  */
  typedef Mat<std::complex<double> > cmat;

  /*!
    \relates Mat
    \brief Integer matrix
  */
  typedef Mat<int> imat;

  /*!
    \relates Mat
    \brief short int matrix
  */
  typedef Mat<short int> smat;

  /*!
    \relates Mat
    \relates GF2mat
    \relates GF2mat_sparse
    \brief bin matrix
  */
  typedef Mat<bin> bmat;

} //namespace itpp


#include <itpp/base/vec.h>

namespace itpp {

  // ----------------------------------------------------------------------
  // Declaration of input and output streams for Mat
  // ----------------------------------------------------------------------

  /*!
    \relatesalso Mat
    \brief Output stream for matrices
  */
  template <class Num_T>
  std::ostream &operator<<(std::ostream &os, const Mat<Num_T> &m);

  /*!
    \relatesalso Mat
    \brief Input stream for matrices

    The input can be on the form "1 2 3; 4 5 6" or "[[1 2 3][4 5 6]]", i.e. with
    brackets or semicolons as row delimiters. The first form is compatible with
    the set method, while the second form is compatible with the ostream
    operator. The elements on a row can be separated by blank space or commas.
    Rows that are shorter than the longest row are padded with zero elements.
    "[]" means an empty matrix.
  */
  template <class Num_T>
  std::istream &operator>>(std::istream &is, Mat<Num_T> &m);

  // ----------------------------------------------------------------------
  // Implementation of templated Mat members and friends
  // ----------------------------------------------------------------------

  template<class Num_T> inline
  void Mat<Num_T>::alloc(int rows, int cols)
  {
    if ((rows > 0) && (cols > 0)) {
      datasize = rows * cols;
      no_rows = rows;
      no_cols = cols;
      create_elements(data, datasize, factory);
    }
    else {
      data = 0;
      datasize = 0;
      no_rows = 0;
      no_cols = 0;
    }
  }

  template<class Num_T> inline
  void Mat<Num_T>::free()
  {
    destroy_elements(data, datasize);
    datasize = 0;
    no_rows = 0;
    no_cols = 0;
  }


  template<class Num_T> inline
  Mat<Num_T>::Mat(const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f) {}

  template<class Num_T> inline
  Mat<Num_T>::Mat(int rows, int cols, const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    it_assert_debug((rows >= 0) && (cols >= 0), "Mat<>::Mat(): Wrong size");
    alloc(rows, cols);
  }

  template<class Num_T> inline
  Mat<Num_T>::Mat(const Mat<Num_T> &m) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(m.factory)
  {
    alloc(m.no_rows, m.no_cols);
    copy_vector(m.datasize, m.data, data);
  }

  template<class Num_T> inline
  Mat<Num_T>::Mat(const Mat<Num_T> &m, const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    alloc(m.no_rows, m.no_cols);
    copy_vector(m.datasize, m.data, data);
  }

  template<class Num_T> inline
  Mat<Num_T>::Mat(const Vec<Num_T> &v, const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    int size = v.size();
    alloc(size, 1);
    copy_vector(size, v._data(), data);
  }

  template<class Num_T> inline
  Mat<Num_T>::Mat(const std::string &str, const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    set(str);
  }

  template<class Num_T> inline
  Mat<Num_T>::Mat(const char *str, const Factory &f) :
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    set(str);
  }

  template<class Num_T>
  Mat<Num_T>::Mat(const Num_T *c_array, int rows, int cols, bool row_major,
                  const Factory &f):
    datasize(0), no_rows(0), no_cols(0), data(0), factory(f)
  {
    alloc(rows, cols);
    if (!row_major)
      copy_vector(datasize, c_array, data);
    else
      for (int i=0; i<rows; i++)
	for (int j=0; j<cols; j++)
	  data[i+j*no_rows] = c_array[i*no_cols+j];
  }

  template<class Num_T> inline
  Mat<Num_T>::~Mat()
  {
    free();
  }


  template<class Num_T>
  void Mat<Num_T>::set_size(int rows, int cols, bool copy)
  {
    it_assert_debug((rows >= 0) && (cols >= 0),
                    "Mat<>::set_size(): Wrong size");
    // check if we have to resize the current matrix
    if ((no_rows == rows) && (no_cols == cols))
      return;
    // conditionally copy previous matrix content
    if (copy) {
      // create a temporary pointer to the allocated data
      Num_T* tmp = data;
      // store the current number of elements and number of rows
      int old_datasize = datasize;
      int old_rows = no_rows;
      // check the boundaries of the copied data
      int min_r = (no_rows < rows) ? no_rows : rows;
      int min_c = (no_cols < cols) ? no_cols : cols;
      // allocate new memory
      alloc(rows, cols);
      // copy the previous data into the allocated memory
      for (int i = 0; i < min_c; ++i) {
	copy_vector(min_r, &tmp[i*old_rows], &data[i*no_rows]);
      }
      // fill-in the rest of matrix with zeros
      for (int i = min_r; i < rows; ++i)
	for (int j = 0; j < cols; ++j)
	  data[i+j*rows] = Num_T(0);
      for (int j = min_c; j < cols; ++j)
	for (int i = 0; i < min_r; ++i)
	  data[i+j*rows] = Num_T(0);
      // delete old elements
      destroy_elements(tmp, old_datasize);
    }
    // if possible, reuse the allocated memory
    else if (datasize == rows * cols) {
      no_rows = rows;
      no_cols = cols;
    }
    // finally release old memory and allocate a new one
    else {
      free();
      alloc(rows, cols);
    }
  }

  template<class Num_T> inline
  void Mat<Num_T>::zeros()
  {
    for(int i=0; i<datasize; i++)
      data[i] = Num_T(0);
  }

  template<class Num_T> inline
  void Mat<Num_T>::ones()
  {
    for(int i=0; i<datasize; i++)
      data[i] = Num_T(1);
  }

  template<class Num_T> inline
  const Num_T& Mat<Num_T>::operator()(int r, int c) const
  {
    it_assert_debug(in_range(r, c),
                    "Mat<>::operator(): Indexing out of range");
    return data[r+c*no_rows];
  }

  template<class Num_T> inline
  Num_T& Mat<Num_T>::operator()(int r, int c)
  {
    it_assert_debug(in_range(r, c),
                    "Mat<>::operator(): Indexing out of range");
    return data[r+c*no_rows];
  }

  template<class Num_T> inline
  Num_T& Mat<Num_T>::operator()(int i)
  {
    it_assert_debug(in_range(i), "Mat<>::operator(): Index out of range");
    return data[i];
  }

  template<class Num_T> inline
  const Num_T& Mat<Num_T>::operator()(int i) const
  {
    it_assert_debug(in_range(i), "Mat<>::operator(): Index out of range");
    return data[i];
  }

  template<class Num_T> inline
  const Num_T& Mat<Num_T>::get(int r, int c) const
  {
    it_assert_debug(in_range(r, c), "Mat<>::get(): Indexing out of range");
    return data[r+c*no_rows];
  }

  template<class Num_T> inline
  void Mat<Num_T>::set(int r, int c, Num_T t)
  {
    it_assert_debug(in_range(r, c), "Mat<>::set(): Indexing out of range");
    data[r+c*no_rows] = t;
  }


  template<class Num_T>
  void Mat<Num_T>::set(const std::string &str)
  {
    // actual row counter
    int rows = 0;
    // number of rows to allocate next time (8, 16, 32, 64, etc.)
    int maxrows = 8;

    // clean the current matrix content
    free();

    // variable to store the start of a current vector
    std::string::size_type beg = 0;
    std::string::size_type end = 0;
    while (end != std::string::npos) {
      // find next occurrence of a semicolon in string str
      end = str.find(';', beg);
      // parse first row into a vector v
      Vec<Num_T> v(str.substr(beg, end-beg));
      int v_size = v.size();

      // this check is necessary to parse the following two strings as the
      // same matrix: "1 0 1; ; 1 1; " and "1 0 1; 0 0 0; 1 1 0"
      if ((end != std::string::npos) || (v_size > 0)) {
	// matrix empty -> insert v as a first row and allocate maxrows
	if (rows == 0) {
	  set_size(maxrows, v_size, true);
	  set_row(rows++, v);
	}
	else {
	  // check if we need to resize the matrix
	  if ((rows == maxrows) || (v_size != no_cols)) {
	    // we need to add new rows
	    if (rows == maxrows) {
	      maxrows *= 2;
	    }
	    // check if we need to add new columns
	    if (v_size > no_cols) {
	      set_size(maxrows, v_size, true);
	    }
	    else {
	      set_size(maxrows, no_cols, true);
	      // set the size of the parsed vector to the number of columns
	      v.set_size(no_cols, true);
	    }
	  }
	  // set the parsed vector as the next row
	  set_row(rows++, v);
	}
      }
      // update the starting position of the next vector in the parsed
      // string
      beg = end + 1;
    } // if ((end != std::string::npos) || (v.size > 0))

    set_size(rows, no_cols, true);
  }

  template<class Num_T>
  void Mat<Num_T>::set(const char *str)
  {
    set(std::string(str));
  }

  template<class Num_T> inline
  Mat<Num_T> Mat<Num_T>::operator()(int r1, int r2, int c1, int c2) const
  {
    if (r1 == -1) r1 = no_rows-1;
    if (r2 == -1) r2 = no_rows-1;
    if (c1 == -1) c1 = no_cols-1;
    if (c2 == -1) c2 = no_cols-1;

    it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows) &&
                    (c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
                    "Mat<>::operator()(r1, r2, c1, c2): Wrong indexing");

    Mat<Num_T> s(r2-r1+1, c2-c1+1);

    for (int i=0;i<s.no_cols;i++)
      copy_vector(s.no_rows, data+r1+(c1+i)*no_rows, s.data+i*s.no_rows);

    return s;
  }

  template<class Num_T> inline
  Mat<Num_T> Mat<Num_T>::get(int r1, int r2, int c1, int c2) const
  {
    return (*this)(r1, r2, c1, c2);
  }

  template<class Num_T> inline
  Vec<Num_T> Mat<Num_T>::get_row(int r) const
  {
    it_assert_debug(row_in_range(r), "Mat<>::get_row(): Index out of range");
    Vec<Num_T> a(no_cols);

    copy_vector(no_cols, data+r, no_rows, a._data(), 1);
    return a;
  }

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::get_rows(int r1, int r2) const
  {
    it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows),
                    "Mat<>::get_rows(): Wrong indexing");
    Mat<Num_T> m(r2-r1+1, no_cols);

    for (int i=0; i<m.rows(); i++)
      copy_vector(no_cols, data+i+r1, no_rows, m.data+i, m.no_rows);

    return m;
  }

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::get_rows(const Vec<int> &indexlist) const
  {
    Mat<Num_T> m(indexlist.size(),no_cols);

    for (int i=0;i<indexlist.size();i++) {
      it_assert_debug(row_in_range(indexlist(i)),
                      "Mat<>::get_rows(indexlist): Indexing out of range");
      copy_vector(no_cols, data+indexlist(i), no_rows, m.data+i, m.no_rows);
    }

    return m;
  }

  template<class Num_T> inline
  Vec<Num_T> Mat<Num_T>::get_col(int c) const
  {
    it_assert_debug(col_in_range(c), "Mat<>::get_col(): Index out of range");
    Vec<Num_T> a(no_rows);

    copy_vector(no_rows, data+c*no_rows, a._data());

    return a;
  }

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::get_cols(int c1, int c2) const
  {
    it_assert_debug((c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
                    "Mat<>::get_cols(): Wrong indexing");
    Mat<Num_T> m(no_rows, c2-c1+1);

    for (int i=0; i<m.cols(); i++)
      copy_vector(no_rows, data+(i+c1)*no_rows, m.data+i*m.no_rows);

    return m;
  }

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::get_cols(const Vec<int> &indexlist) const
  {
    Mat<Num_T> m(no_rows,indexlist.size());

    for (int i=0; i<indexlist.size(); i++) {
      it_assert_debug(col_in_range(indexlist(i)),
                      "Mat<>::get_cols(indexlist): Indexing out of range");
      copy_vector(no_rows, data+indexlist(i)*no_rows, m.data+i*m.no_rows);
    }

    return m;
  }

  template<class Num_T> inline
  void Mat<Num_T>::set_row(int r, const Vec<Num_T> &v)
  {
    it_assert_debug(row_in_range(r), "Mat<>::set_row(): Index out of range");
    it_assert_debug(v.size() == no_cols,
                    "Mat<>::set_row(): Wrong size of input vector");
    copy_vector(v.size(), v._data(), 1, data+r, no_rows);
  }

  template<class Num_T> inline
  void Mat<Num_T>::set_col(int c, const Vec<Num_T> &v)
  {
    it_assert_debug(col_in_range(c), "Mat<>::set_col(): Index out of range");
    it_assert_debug(v.size() == no_rows,
                    "Mat<>::set_col(): Wrong size of input vector");
    copy_vector(v.size(), v._data(), data+c*no_rows);
  }


  template<class Num_T>
  void Mat<Num_T>::set_rows(int r, const Mat<Num_T> &m)
  {
    it_assert_debug(row_in_range(r), "Mat<>::set_rows(): Index out of range");
    it_assert_debug(no_cols == m.cols(),
		    "Mat<>::set_rows(): Column sizes do not match");
    it_assert_debug(m.rows() + r <= no_rows,
		    "Mat<>::set_rows(): Not enough rows");

    for (int i = 0; i < m.rows(); ++i) {
      copy_vector(no_cols, m.data+i, m.no_rows, data+i+r, no_rows);
    }
  }

  template<class Num_T>
  void Mat<Num_T>::set_cols(int c, const Mat<Num_T> &m)
  {
    it_assert_debug(col_in_range(c), "Mat<>::set_cols(): Index out of range");
    it_assert_debug(no_rows == m.rows(),
		    "Mat<>::set_cols(): Row sizes do not match");
    it_assert_debug(m.cols() + c <= no_cols,
		    "Mat<>::set_cols(): Not enough colums");

    for (int i = 0; i < m.cols(); ++i) {
      copy_vector(no_rows, m.data+i*no_rows, data+(i+c)*no_rows);
    }
  }


  template<class Num_T> inline
  void Mat<Num_T>::copy_row(int to, int from)
  {
    it_assert_debug(row_in_range(to) && row_in_range(from),
                    "Mat<>::copy_row(): Indexing out of range");
    if (from == to)
      return;

    copy_vector(no_cols, data+from, no_rows, data+to, no_rows);
  }

  template<class Num_T> inline
  void Mat<Num_T>::copy_col(int to, int from)
  {
    it_assert_debug(col_in_range(to) && col_in_range(from),
                    "Mat<>::copy_col(): Indexing out of range");
    if (from == to)
      return;

    copy_vector(no_rows, data+from*no_rows, data+to*no_rows);
  }

  template<class Num_T> inline
  void Mat<Num_T>::swap_rows(int r1, int r2)
  {
    it_assert_debug(row_in_range(r1) && row_in_range(r2),
                    "Mat<>::swap_rows(): Indexing out of range");
    if (r1 == r2)
      return;

    swap_vector(no_cols, data+r1, no_rows, data+r2, no_rows);
  }

  template<class Num_T> inline
  void Mat<Num_T>::swap_cols(int c1, int c2)
  {
    it_assert_debug(col_in_range(c1) && col_in_range(c2),
                    "Mat<>::swap_cols(): Indexing out of range");
    if (c1 == c2)
      return;

    swap_vector(no_rows, data+c1*no_rows, data+c2*no_rows);
  }

  template<class Num_T>
  void Mat<Num_T>::set_submatrix(int r1, int r2, int c1, int c2,
                                 const Mat<Num_T> &m)
  {

    if (r1 == -1) r1 = no_rows-1;
    if (r2 == -1) r2 = no_rows-1;
    if (c1 == -1) c1 = no_cols-1;
    if (c2 == -1) c2 = no_cols-1;

    it_assert_debug(r1>=0 && r2>=0 && r1<no_rows && r2<no_rows &&
	       c1>=0 && c2>=0 && c1<no_cols && c2<no_cols, "Mat<Num_T>::set_submatrix(): index out of range");

    it_assert_debug(r2>=r1 && c2>=c1, "Mat<Num_T>::set_submatrix: r2<r1 or c2<c1");
    it_assert_debug(m.no_rows == r2-r1+1 && m.no_cols == c2-c1+1, "Mat<Num_T>::set_submatrix(): sizes don't match");

    for (int i=0; i<m.no_cols; i++)
      copy_vector(m.no_rows, m.data+i*m.no_rows, data+(c1+i)*no_rows+r1);
  }



  template<class Num_T> inline
  void Mat<Num_T>::set_submatrix(int r, int c, const Mat<Num_T> &m)
  {
    it_assert_debug((r >= 0) && (r + m.no_rows <= no_rows) &&
                    (c >= 0) && (c + m.no_cols <= no_cols),
                    "Mat<>::set_submatrix(): Indexing out of range "
                    "or wrong input matrix");
    for (int i=0; i<m.no_cols; i++)
      copy_vector(m.no_rows, m.data+i*m.no_rows, data+(c+i)*no_rows+r);
  }



  template<class Num_T> inline
  void Mat<Num_T>::set_submatrix(int r1, int r2, int c1, int c2, Num_T t)
  {

    if (r1 == -1) r1 = no_rows-1;
    if (r2 == -1) r2 = no_rows-1;
    if (c1 == -1) c1 = no_cols-1;
    if (c2 == -1) c2 = no_cols-1;
    it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows) &&
                    (c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
                    "Mat<>::set_submatrix(): Wrong indexing");

    int i, j, pos, rows = r2-r1+1;

    for (i=c1; i<=c2; i++) {
      pos = i*no_rows+r1;
      for (j=0; j<rows; j++) {
	data[pos++] = t;
      }
    }
  }

  template<class Num_T>
  void Mat<Num_T>::del_row(int r)
  {
    it_assert_debug(row_in_range(r), "Mat<>::del_row(): Index out of range");
    Mat<Num_T> Temp(*this);
    set_size(no_rows-1, no_cols, false);
    for (int i=0 ; i < r ; i++) {
      copy_vector(no_cols, &Temp.data[i], no_rows+1, &data[i], no_rows);
    }
    for (int i=r ; i < no_rows ; i++) {
      copy_vector(no_cols, &Temp.data[i+1], no_rows+1, &data[i], no_rows);
    }

  }

  template<class Num_T>
  void Mat<Num_T>::del_rows(int r1, int r2)
  {
    it_assert_debug((r1 >= 0) && (r1 <= r2) && (r2 < no_rows),
                    "Mat<>::del_rows(): Indexing out of range");
    Mat<Num_T> Temp(*this);
    int no_del_rows = r2-r1+1;
    set_size(no_rows-no_del_rows, no_cols, false);
    for (int i = 0; i < r1 ; ++i) {
      copy_vector(no_cols, &Temp.data[i], Temp.no_rows, &data[i], no_rows);
    }
    for (int i = r2+1; i < Temp.no_rows; ++i) {
      copy_vector(no_cols, &Temp.data[i], Temp.no_rows, &data[i-no_del_rows],
		  no_rows);
    }
  }

  template<class Num_T>
  void Mat<Num_T>::del_col(int c)
  {
    it_assert_debug(col_in_range(c), "Mat<>::del_col(): Index out of range");
    Mat<Num_T> Temp(*this);

    set_size(no_rows, no_cols-1, false);
    copy_vector(c*no_rows, Temp.data, data);
    copy_vector((no_cols - c)*no_rows, &Temp.data[(c+1)*no_rows], &data[c*no_rows]);
  }

  template<class Num_T>
  void Mat<Num_T>::del_cols(int c1, int c2)
  {
    it_assert_debug((c1 >= 0) && (c1 <= c2) && (c2 < no_cols),
                    "Mat<>::del_cols(): Indexing out of range");
    Mat<Num_T> Temp(*this);
    int n_deleted_cols = c2-c1+1;
    set_size(no_rows, no_cols-n_deleted_cols, false);
    copy_vector(c1*no_rows, Temp.data, data);
    copy_vector((no_cols-c1)*no_rows, &Temp.data[(c2+1)*no_rows], &data[c1*no_rows]);
  }

  template<class Num_T>
  void Mat<Num_T>::ins_row(int r, const Vec<Num_T> &v)
  {
    it_assert_debug((r >= 0) && (r <= no_rows),
                    "Mat<>::ins_row(): Index out of range");
    it_assert_debug((v.size() == no_cols) || (no_rows == 0),
                    "Mat<>::ins_row(): Wrong size of the input vector");

    if (no_cols==0) {
      no_cols = v.size();
    }

    Mat<Num_T> Temp(*this);
    set_size(no_rows+1, no_cols, false);

    for (int i=0 ; i < r ; i++) {
      copy_vector(no_cols, &Temp.data[i], no_rows-1, &data[i], no_rows);
    }
    copy_vector(no_cols, v._data(), 1, &data[r], no_rows);
    for (int i=r+1 ; i < no_rows ; i++) {
      copy_vector(no_cols, &Temp.data[i-1], no_rows-1, &data[i], no_rows);
    }
  }

  template<class Num_T>
  void Mat<Num_T>::ins_col(int c, const Vec<Num_T> &v)
  {
    it_assert_debug((c >= 0) && (c <= no_cols),
                    "Mat<>::ins_col(): Index out of range");
    it_assert_debug((v.size() == no_rows) || (no_cols == 0),
                    "Mat<>::ins_col(): Wrong size of the input vector");

    if (no_rows==0) {
      no_rows = v.size();
    }

    Mat<Num_T> Temp(*this);
    set_size(no_rows, no_cols+1, false);

    copy_vector(c*no_rows, Temp.data, data);
    copy_vector(no_rows, v._data(), &data[c*no_rows]);
    copy_vector((no_cols-c-1)*no_rows, &Temp.data[c*no_rows], &data[(c+1)*no_rows]);
  }

  template<class Num_T> inline
  void Mat<Num_T>::append_row(const Vec<Num_T> &v)
  {
    ins_row(no_rows, v);
  }

  template<class Num_T> inline
  void Mat<Num_T>::append_col(const Vec<Num_T> &v)
  {
    ins_col(no_cols, v);
  }

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::transpose() const
  {
    Mat<Num_T> temp(no_cols, no_rows);
    for (int i = 0; i < no_rows; ++i) {
      copy_vector(no_cols, &data[i], no_rows, &temp.data[i * no_cols], 1);
    }
    return temp;
  }

  //! \cond
  template<>
  cmat cmat::hermitian_transpose() const;
  //! \endcond

  template<class Num_T>
  Mat<Num_T> Mat<Num_T>::hermitian_transpose() const
  {
    Mat<Num_T> temp(no_cols, no_rows);
    for (int i = 0; i < no_rows; ++i) {
      copy_vector(no_cols, &data[i], no_rows, &temp.data[i * no_cols], 1);
    }
    return temp;
  }

  template<class Num_T>
  Mat<Num_T> concat_horizontal(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    it_assert_debug(m1.no_rows == m2.no_rows,
                    "Mat<>::concat_horizontal(): Wrong sizes");
    int no_rows = m1.no_rows;
    Mat<Num_T> temp(no_rows, m1.no_cols + m2.no_cols);
    for (int i = 0; i < m1.no_cols; ++i) {
      copy_vector(no_rows, &m1.data[i * no_rows], &temp.data[i * no_rows]);
    }
    for (int i = 0; i < m2.no_cols; ++i) {
      copy_vector(no_rows, &m2.data[i * no_rows], &temp.data[(m1.no_cols + i)
							     * no_rows]);
    }
    return temp;
  }

  template<class Num_T>
  Mat<Num_T> concat_vertical(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    it_assert_debug(m1.no_cols == m2.no_cols,
                    "Mat<>::concat_vertical(): Wrong sizes");
    int no_cols = m1.no_cols;
    Mat<Num_T> temp(m1.no_rows + m2.no_rows, no_cols);
    for (int i = 0; i < no_cols; ++i) {
      copy_vector(m1.no_rows, &m1.data[i * m1.no_rows],
		  &temp.data[i * temp.no_rows]);
      copy_vector(m2.no_rows, &m2.data[i * m2.no_rows],
		  &temp.data[i * temp.no_rows + m1.no_rows]);
    }
    return temp;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator=(Num_T t)
  {
    for (int i=0; i<datasize; i++)
      data[i] = t;
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator=(const Mat<Num_T> &m)
  {
    if (this != &m) {
      set_size(m.no_rows,m.no_cols, false);
      if (m.datasize != 0)
	copy_vector(m.datasize, m.data, data);
    }
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator=(const Vec<Num_T> &v)
  {
    it_assert_debug(((no_rows == 1) && (no_cols == v.size()))
		    || ((no_cols == 1) && (no_rows == v.size())),
		    "Mat<>::operator=(): Wrong size of the input vector");
    set_size(v.size(), 1, false);
    copy_vector(v.size(), v._data(), data);
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator=(const char *str)
  {
    set(str);
    return *this;
  }

  //-------------------- Templated friend functions --------------------------

  template<class Num_T>
  Mat<Num_T>& Mat<Num_T>::operator+=(const Mat<Num_T> &m)
  {
    if (datasize == 0)
      operator=(m);
    else {
      int i, j, m_pos=0, pos=0;
      it_assert_debug(m.no_rows==no_rows && m.no_cols==no_cols,"Mat<Num_T>::operator+=: wrong sizes");
      for (i=0; i<no_cols; i++) {
	for (j=0; j<no_rows; j++)
	  data[pos+j] += m.data[m_pos+j];
	pos += no_rows;
	m_pos += m.no_rows;
      }
    }
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator+=(Num_T t)
  {
    for (int i=0; i<datasize; i++)
      data[i] += t;
    return *this;
  }

  template<class Num_T>
  Mat<Num_T> operator+(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    Mat<Num_T> r(m1.no_rows, m1.no_cols);
    int i, j, m1_pos=0, m2_pos=0, r_pos=0;

    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::operator+(): Wrong sizes");

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++)
	r.data[r_pos+j] = m1.data[m1_pos+j] + m2.data[m2_pos+j];
      // next column
      m1_pos += m1.no_rows;
      m2_pos += m2.no_rows;
      r_pos += r.no_rows;
    }

    return r;
  }


  template<class Num_T>
  Mat<Num_T> operator+(const Mat<Num_T> &m, Num_T t)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);

    for (int i=0; i<r.datasize; i++)
      r.data[i] = m.data[i] + t;

    return r;
  }

  template<class Num_T>
  Mat<Num_T> operator+(Num_T t, const Mat<Num_T> &m)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);

    for (int i=0; i<r.datasize; i++)
      r.data[i] = t + m.data[i];

    return r;
  }

  template<class Num_T>
  Mat<Num_T>& Mat<Num_T>::operator-=(const Mat<Num_T> &m)
  {
    int i,j, m_pos=0, pos=0;

    if (datasize == 0) {
      set_size(m.no_rows, m.no_cols, false);
      for (i=0; i<no_cols; i++) {
	for (j=0; j<no_rows; j++)
	  data[pos+j] = -m.data[m_pos+j];
	// next column
	m_pos += m.no_rows;
	pos += no_rows;
      }
    }
    else {
      it_assert_debug((m.no_rows == no_rows) && (m.no_cols == no_cols),
                      "Mat<>::operator-=(): Wrong sizes");
      for (i=0; i<no_cols; i++) {
	for (j=0; j<no_rows; j++)
	  data[pos+j] -= m.data[m_pos+j];
	// next column
	m_pos += m.no_rows;
	pos += no_rows;
      }
    }
    return *this;
  }

  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    Mat<Num_T> r(m1.no_rows, m1.no_cols);
    int i, j, m1_pos=0, m2_pos=0, r_pos=0;
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::operator-(): Wrong sizes");

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++)
	r.data[r_pos+j] = m1.data[m1_pos+j] - m2.data[m2_pos+j];
      // next column
      m1_pos += m1.no_rows;
      m2_pos += m2.no_rows;
      r_pos += r.no_rows;
    }

    return r;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator-=(Num_T t)
  {
    for (int i=0; i<datasize; i++)
      data[i] -= t;
    return *this;
  }

  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m, Num_T t)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);
    int i, j, m_pos=0, r_pos=0;

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++)
	r.data[r_pos+j] = m.data[m_pos+j] - t;
      // next column
      m_pos += m.no_rows;
      r_pos += r.no_rows;
    }

    return r;
  }

  template<class Num_T>
  Mat<Num_T> operator-(Num_T t, const Mat<Num_T> &m)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);
    int i, j, m_pos=0, r_pos=0;

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++)
	r.data[r_pos+j] = t - m.data[m_pos+j];
      // next column
      m_pos += m.no_rows;
      r_pos += r.no_rows;
    }

    return r;
  }

  template<class Num_T>
  Mat<Num_T> operator-(const Mat<Num_T> &m)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);
    int i, j, m_pos=0, r_pos=0;

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++)
	r.data[r_pos+j] = -m.data[m_pos+j];
      // next column
      m_pos += m.no_rows;
      r_pos += r.no_rows;
    }

    return r;
  }

#if defined(HAVE_BLAS)
  template<> mat& mat::operator*=(const mat &m);
  template<> cmat& cmat::operator*=(const cmat &m);
#endif

  template<class Num_T>
  Mat<Num_T>& Mat<Num_T>::operator*=(const Mat<Num_T> &m)
  {
    it_assert_debug(no_cols == m.no_rows,"Mat<>::operator*=(): Wrong sizes");
    Mat<Num_T> r(no_rows, m.no_cols);

    Num_T tmp;

    int i,j,k, r_pos=0, pos=0, m_pos=0;

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++) {
	tmp = Num_T(0);
	pos = 0;
	for (k=0; k<no_cols; k++) {
	  tmp += data[pos+j] * m.data[m_pos+k];
	  pos += no_rows;
	}
	r.data[r_pos+j] = tmp;
      }
      r_pos += r.no_rows;
      m_pos += m.no_rows;
    }
    operator=(r); // time consuming
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator*=(Num_T t)
  {
    scal_vector(datasize, t, data);
    return *this;
  }

#if defined(HAVE_BLAS)
  template<> mat operator*(const mat &m1, const mat &m2);
  template<> cmat operator*(const cmat &m1, const cmat &m2);
#endif


  template<class Num_T>
  Mat<Num_T> operator*(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    it_assert_debug(m1.no_cols == m2.no_rows,
                    "Mat<>::operator*(): Wrong sizes");
    Mat<Num_T> r(m1.no_rows, m2.no_cols);

    Num_T tmp;
    int i, j, k;
    Num_T *tr=r.data, *t1, *t2=m2.data;

    for (i=0; i<r.no_cols; i++) {
      for (j=0; j<r.no_rows; j++) {
	tmp = Num_T(0); t1 = m1.data+j;
	for (k=m1.no_cols; k>0; k--) {
	  tmp += *(t1) * *(t2++);
	  t1 += m1.no_rows;
	}
	*(tr++) = tmp; t2 -= m2.no_rows;
      }
      t2 += m2.no_rows;
    }

    return r;
  }

#if defined(HAVE_BLAS)
  template<> vec operator*(const mat &m, const vec &v);
  template<> cvec operator*(const cmat &m, const cvec &v);
#endif

  template<class Num_T>
  Vec<Num_T> operator*(const Mat<Num_T> &m, const Vec<Num_T> &v)
  {
    it_assert_debug(m.no_cols == v.size(),
                    "Mat<>::operator*(): Wrong sizes");
    Vec<Num_T> r(m.no_rows);
    int i, k, m_pos;

    for (i=0; i<m.no_rows; i++) {
      r(i) = Num_T(0);
      m_pos = 0;
      for (k=0; k<m.no_cols; k++) {
	r(i) += m.data[m_pos+i] * v(k);
	m_pos += m.no_rows;
      }
    }

    return r;
  }

  template<class Num_T>
  Mat<Num_T> operator*(const Vec<Num_T> &v, const Mat<Num_T> &m)
  {
    it_assert((m.no_rows == 1),"Mat<Num_T>::operator*(): wrong sizes");
    it_warning("Mat<Num_T>::operator*(v, m): This operator is deprecated. "
               "Please use outer_product(v, m.get_row(0)) instead.");
    return outer_product(v, m.get_row(0));
  }

  template<class Num_T>
  Mat<Num_T> operator*(const Mat<Num_T> &m, Num_T t)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);

    for (int i=0; i<r.datasize; i++)
      r.data[i] = m.data[i] * t;

    return r;
  }

  template<class Num_T> inline
  Mat<Num_T> operator*(Num_T t, const Mat<Num_T> &m)
  {
    return operator*(m, t);
  }

  template<class Num_T> inline
  Mat<Num_T> elem_mult(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    Mat<Num_T> out;
    elem_mult_out(m1,m2,out);
    return out;
  }

  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     Mat<Num_T> &out)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::elem_mult_out(): Wrong sizes");
    out.set_size(m1.no_rows, m1.no_cols);
    for(int i=0; i<out.datasize; i++)
      out.data[i] = m1.data[i] * m2.data[i];
  }

  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     const Mat<Num_T> &m3, Mat<Num_T> &out)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_rows == m3.no_rows)
                    && (m1.no_cols == m2.no_cols) && (m1.no_cols == m3.no_cols),
                    "Mat<>::elem_mult_out(): Wrong sizes");
    out.set_size(m1.no_rows, m1.no_cols);
    for(int i=0; i<out.datasize; i++)
      out.data[i] = m1.data[i] * m2.data[i] * m3.data[i];
  }

  template<class Num_T>
  void elem_mult_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                     const Mat<Num_T> &m3, const Mat<Num_T> &m4,
                     Mat<Num_T> &out)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_rows == m3.no_rows)
                    && (m1.no_rows == m4.no_rows) && (m1.no_cols == m2.no_cols)
                    && (m1.no_cols == m3.no_cols) && (m1.no_cols == m4.no_cols),
                    "Mat<>::elem_mult_out(): Wrong sizes");
    out.set_size(m1.no_rows, m1.no_cols);
    for(int i=0; i<out.datasize; i++)
      out.data[i] = m1.data[i] * m2.data[i] * m3.data[i] * m4.data[i];
  }

  template<class Num_T> inline
  void elem_mult_inplace(const Mat<Num_T> &m1, Mat<Num_T> &m2)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::elem_mult_inplace(): Wrong sizes");
    for(int i=0; i<m2.datasize; i++)
      m2.data[i] *= m1.data[i];
  }

  template<class Num_T> inline
  Num_T elem_mult_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    it_assert_debug( (m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                     "Mat<>::elem_mult_sum(): Wrong sizes");
    Num_T acc = 0;

    for(int i=0; i<m1.datasize; i++)
      acc += m1.data[i] * m2.data[i];

    return acc;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator/=(Num_T t)
  {
    for (int i=0; i<datasize; i++)
      data[i] /= t;
    return *this;
  }

  template<class Num_T>
  Mat<Num_T> operator/(const Mat<Num_T> &m, Num_T t)
  {
    Mat<Num_T> r(m.no_rows, m.no_cols);

    for (int i=0; i<r.datasize; i++)
      r.data[i] = m.data[i] / t;

    return r;
  }

  template<class Num_T> inline
  Mat<Num_T>& Mat<Num_T>::operator/=(const Mat<Num_T> &m)
  {
    it_assert_debug((m.no_rows == no_rows) && (m.no_cols == no_cols),
                    "Mat<>::operator/=(): Wrong sizes");
    for (int i=0; i<datasize; i++)
      data[i] /= m.data[i];
    return *this;
  }

  template<class Num_T> inline
  Mat<Num_T> elem_div(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    Mat<Num_T> out;
    elem_div_out(m1,m2,out);
    return out;
  }

  template<class Num_T>
  void elem_div_out(const Mat<Num_T> &m1, const Mat<Num_T> &m2,
                    Mat<Num_T> &out)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::elem_div_out(): Wrong sizes");

    if( (out.no_rows != m1.no_rows) || (out.no_cols != m1.no_cols) )
      out.set_size(m1.no_rows, m1.no_cols);

    for(int i=0; i<out.datasize; i++)
      out.data[i] = m1.data[i] / m2.data[i];
  }

  template<class Num_T> inline
  Num_T elem_div_sum(const Mat<Num_T> &m1, const Mat<Num_T> &m2)
  {
    it_assert_debug((m1.no_rows == m2.no_rows) && (m1.no_cols == m2.no_cols),
                    "Mat<>::elem_div_sum(): Wrong sizes");
    Num_T acc = 0;

    for(int i=0; i<m1.datasize; i++)
      acc += m1.data[i] / m2.data[i];

    return acc;
  }

  template<class Num_T>
  bool Mat<Num_T>::operator==(const Mat<Num_T> &m) const
  {
    if (no_rows!=m.no_rows || no_cols != m.no_cols) return false;
    for (int i=0;i<datasize;i++) {
      if (data[i]!=m.data[i]) return false;
    }
    return true;
  }

  template<class Num_T>
  bool Mat<Num_T>::operator!=(const Mat<Num_T> &m) const
  {
    if (no_rows != m.no_rows || no_cols != m.no_cols) return true;
    for (int i=0;i<datasize;i++) {
      if (data[i]!=m.data[i]) return true;
    }
    return false;
  }

  template <class Num_T>
  std::ostream &operator<<(std::ostream &os, const Mat<Num_T> &m)
  {
    int i;

    switch (m.rows()) {
    case 0 :
      os << "[]";
      break;
    case 1 :
      os << '[' << m.get_row(0) << ']';
      break;
    default:
      os << '[' << m.get_row(0) << std::endl;
      for (i=1; i<m.rows()-1; i++)
	      os << ' ' << m.get_row(i) << std::endl;
      os << ' ' << m.get_row(m.rows()-1) << ']';
    }

    return os;
  }

  template <class Num_T>
  std::istream &operator>>(std::istream &is, Mat<Num_T> &m)
  {
    std::ostringstream buffer;
    bool started = false;
    bool finished = false;
    bool brackets = false;
    bool within_double_brackets = false;
    char c;

    while (!finished) {
      if (is.eof()) {
        finished = true;
      } else {
        c = is.get();

        if (is.eof() || (c == '\n')) {
          if (brackets) {
            // Right bracket missing
            is.setstate(std::ios_base::failbit);
            finished = true;
          } else if (!((c == '\n') && !started)) {
            finished = true;
          }
        } else if ((c == ' ') || (c == '\t')) {
          if (started) {
            buffer << ' ';
          }
        } else if (c == '[') {
          if ((started && !brackets) || within_double_brackets) {
            // Unexpected left bracket
            is.setstate(std::ios_base::failbit);
            finished = true;
          } else if (!started) {
            started = true;
            brackets = true;
          } else {
            within_double_brackets = true;
          }
        } else if (c == ']') {
          if (!started || !brackets) {
            // Unexpected right bracket
            is.setstate(std::ios_base::failbit);
            finished = true;
          } else if (within_double_brackets) {
            within_double_brackets = false;
            buffer << ';';
          } else {
            finished = true;
          }
          while (!is.eof() && (((c = is.peek()) == ' ') || (c == '\t'))) {
            is.get();
          }
          if (!is.eof() && (c == '\n')) {
            is.get();
          }
        } else {
          started = true;
          buffer << c;
        }
      }
    }

    if (!started) {
      m.set_size(0, false);
    } else {
      m.set(buffer.str());
    }

    return is;
  }

  //! \cond

  // ---------------------------------------------------------------------
  // Instantiations
  // ---------------------------------------------------------------------

#ifdef HAVE_EXTERN_TEMPLATE

  // class instantiations

  extern template class Mat<double>;
  extern template class Mat<std::complex<double> >;
  extern template class Mat<int>;
  extern template class Mat<short int>;
  extern template class Mat<bin>;

  // addition operators

  extern template mat operator+(const mat &m1, const mat &m2);
  extern template cmat operator+(const cmat &m1, const cmat &m2);
  extern template imat operator+(const imat &m1, const imat &m2);
  extern template smat operator+(const smat &m1, const smat &m2);
  extern template bmat operator+(const bmat &m1, const bmat &m2);

  extern template mat operator+(const mat &m, double t);
  extern template cmat operator+(const cmat &m, std::complex<double> t);
  extern template imat operator+(const imat &m, int t);
  extern template smat operator+(const smat &m, short t);
  extern template bmat operator+(const bmat &m, bin t);

  extern template mat operator+(double t, const mat &m);
  extern template cmat operator+(std::complex<double> t, const cmat &m);
  extern template imat operator+(int t, const imat &m);
  extern template smat operator+(short t, const smat &m);
  extern template bmat operator+(bin t, const bmat &m);

  // subtraction operators

  extern template mat operator-(const mat &m1, const mat &m2);
  extern template cmat operator-(const cmat &m1, const cmat &m2);
  extern template imat operator-(const imat &m1, const imat &m2);
  extern template smat operator-(const smat &m1, const smat &m2);
  extern template bmat operator-(const bmat &m1, const bmat &m2);

  extern template mat operator-(const mat &m, double t);
  extern template cmat operator-(const cmat &m, std::complex<double> t);
  extern template imat operator-(const imat &m, int t);
  extern template smat operator-(const smat &m, short t);
  extern template bmat operator-(const bmat &m, bin t);

  extern template mat operator-(double t, const mat &m);
  extern template cmat operator-(std::complex<double> t, const cmat &m);
  extern template imat operator-(int t, const imat &m);
  extern template smat operator-(short t, const smat &m);
  extern template bmat operator-(bin t, const bmat &m);

  // unary minus

  extern template mat operator-(const mat &m);
  extern template cmat operator-(const cmat &m);
  extern template imat operator-(const imat &m);
  extern template smat operator-(const smat &m);
  extern template bmat operator-(const bmat &m);

  // multiplication operators

#if !defined(HAVE_BLAS)
  extern template mat operator*(const mat &m1, const mat &m2);
  extern template cmat operator*(const cmat &m1, const cmat &m2);
#endif
  extern template imat operator*(const imat &m1, const imat &m2);
  extern template smat operator*(const smat &m1, const smat &m2);
  extern template bmat operator*(const bmat &m1, const bmat &m2);

#if !defined(HAVE_BLAS)
  extern template vec operator*(const mat &m, const vec &v);
  extern template cvec operator*(const cmat &m, const cvec &v);
#endif
  extern template ivec operator*(const imat &m, const ivec &v);
  extern template svec operator*(const smat &m, const svec &v);
  extern template bvec operator*(const bmat &m, const bvec &v);

  extern template mat operator*(const vec &v, const mat &m);
  extern template cmat operator*(const cvec &v, const cmat &m);
  extern template imat operator*(const ivec &v, const imat &m);
  extern template smat operator*(const svec &v, const smat &m);
  extern template bmat operator*(const bvec &v, const bmat &m);

  extern template mat operator*(const mat &m, double t);
  extern template cmat operator*(const cmat &m, std::complex<double> t);
  extern template imat operator*(const imat &m, int t);
  extern template smat operator*(const smat &m, short t);
  extern template bmat operator*(const bmat &m, bin t);

  extern template mat operator*(double t, const mat &m);
  extern template cmat operator*(std::complex<double> t, const cmat &m);
  extern template imat operator*(int t, const imat &m);
  extern template smat operator*(short t, const smat &m);
  extern template bmat operator*(bin t, const bmat &m);

  // element-wise multiplication

  extern template mat elem_mult(const mat &m1, const mat &m2);
  extern template cmat elem_mult(const cmat &m1, const cmat &m2);
  extern template imat elem_mult(const imat &m1, const imat &m2);
  extern template smat elem_mult(const smat &m1, const smat &m2);
  extern template bmat elem_mult(const bmat &m1, const bmat &m2);

  extern template void elem_mult_out(const mat &m1, const mat &m2, mat &out);
  extern template void elem_mult_out(const cmat &m1, const cmat &m2,
                                     cmat &out);
  extern template void elem_mult_out(const imat &m1, const imat &m2,
                                     imat &out);
  extern template void elem_mult_out(const smat &m1, const smat &m2,
                                     smat &out);
  extern template void elem_mult_out(const bmat &m1, const bmat &m2,
                                     bmat &out);

  extern template void elem_mult_out(const mat &m1, const mat &m2,
                                     const mat &m3, mat &out);
  extern template void elem_mult_out(const cmat &m1, const cmat &m2,
                                     const cmat &m3, cmat &out);
  extern template void elem_mult_out(const imat &m1, const imat &m2,
                                     const imat &m3, imat &out);
  extern template void elem_mult_out(const smat &m1, const smat &m2,
                                     const smat &m3, smat &out);
  extern template void elem_mult_out(const bmat &m1, const bmat &m2,
                                     const bmat &m3, bmat &out);

  extern template void elem_mult_out(const mat &m1, const mat &m2,
                                     const mat &m3, const mat &m4, mat &out);
  extern template void elem_mult_out(const cmat &m1, const cmat &m2,
                                     const cmat &m3, const cmat &m4,
                                     cmat &out);
  extern template void elem_mult_out(const imat &m1, const imat &m2,
                                     const imat &m3, const imat &m4,
                                     imat &out);
  extern template void elem_mult_out(const smat &m1, const smat &m2,
                                     const smat &m3, const smat &m4,
                                     smat &out);
  extern template void elem_mult_out(const bmat &m1, const bmat &m2,
                                     const bmat &m3, const bmat &m4,
                                     bmat &out);

  extern template void elem_mult_inplace(const mat &m1, mat &m2);
  extern template void elem_mult_inplace(const cmat &m1, cmat &m2);
  extern template void elem_mult_inplace(const imat &m1, imat &m2);
  extern template void elem_mult_inplace(const smat &m1, smat &m2);
  extern template void elem_mult_inplace(const bmat &m1, bmat &m2);

  extern template double elem_mult_sum(const mat &m1, const mat &m2);
  extern template std::complex<double> elem_mult_sum(const cmat &m1,
                                                     const cmat &m2);
  extern template int elem_mult_sum(const imat &m1, const imat &m2);
  extern template short elem_mult_sum(const smat &m1, const smat &m2);
  extern template bin elem_mult_sum(const bmat &m1, const bmat &m2);

  // division operator

  extern template mat operator/(const mat &m, double t);
  extern template cmat operator/(const cmat &m, std::complex<double> t);
  extern template imat operator/(const imat &m, int t);
  extern template smat operator/(const smat &m, short t);
  extern template bmat operator/(const bmat &m, bin t);

  // element-wise division

  extern template mat elem_div(const mat &m1, const mat &m2);
  extern template cmat elem_div(const cmat &m1, const cmat &m2);
  extern template imat elem_div(const imat &m1, const imat &m2);
  extern template smat elem_div(const smat &m1, const smat &m2);
  extern template bmat elem_div(const bmat &m1, const bmat &m2);

  extern template void elem_div_out(const mat &m1, const mat &m2, mat &out);
  extern template void elem_div_out(const cmat &m1, const cmat &m2, cmat &out);
  extern template void elem_div_out(const imat &m1, const imat &m2, imat &out);
  extern template void elem_div_out(const smat &m1, const smat &m2, smat &out);
  extern template void elem_div_out(const bmat &m1, const bmat &m2, bmat &out);

  extern template double elem_div_sum(const mat &m1, const mat &m2);
  extern template std::complex<double> elem_div_sum(const cmat &m1,
                                                    const cmat &m2);
  extern template int elem_div_sum(const imat &m1, const imat &m2);
  extern template short elem_div_sum(const smat &m1, const smat &m2);
  extern template bin elem_div_sum(const bmat &m1, const bmat &m2);

  // concatenation

  extern template mat concat_horizontal(const mat &m1, const mat &m2);
  extern template cmat concat_horizontal(const cmat &m1, const cmat &m2);
  extern template imat concat_horizontal(const imat &m1, const imat &m2);
  extern template smat concat_horizontal(const smat &m1, const smat &m2);
  extern template bmat concat_horizontal(const bmat &m1, const bmat &m2);

  extern template mat concat_vertical(const mat &m1, const mat &m2);
  extern template cmat concat_vertical(const cmat &m1, const cmat &m2);
  extern template imat concat_vertical(const imat &m1, const imat &m2);
  extern template smat concat_vertical(const smat &m1, const smat &m2);
  extern template bmat concat_vertical(const bmat &m1, const bmat &m2);

  // I/O streams

  extern template std::ostream &operator<<(std::ostream &os, const mat  &m);
  extern template std::ostream &operator<<(std::ostream &os, const cmat &m);
  extern template std::ostream &operator<<(std::ostream &os, const imat  &m);
  extern template std::ostream &operator<<(std::ostream &os, const smat  &m);
  extern template std::ostream &operator<<(std::ostream &os, const bmat  &m);

  extern template std::istream &operator>>(std::istream &is, mat  &m);
  extern template std::istream &operator>>(std::istream &is, cmat &m);
  extern template std::istream &operator>>(std::istream &is, imat  &m);
  extern template std::istream &operator>>(std::istream &is, smat  &m);
  extern template std::istream &operator>>(std::istream &is, bmat  &m);

#endif // HAVE_EXTERN_TEMPLATE

  //! \endcond

} // namespace itpp

#endif // #ifndef MAT_H