File: elem_math.h

package info (click to toggle)
libitpp 4.0.4-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 7,520 kB
  • ctags: 6,341
  • sloc: cpp: 51,608; sh: 9,248; makefile: 636; fortran: 8
file content (279 lines) | stat: -rw-r--r-- 8,197 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*!
 * \file
 * \brief Elementary mathematical functions - header file
 * \author Tony Ottosson and Adam Piatyszek
 *
 * -------------------------------------------------------------------------
 *
 * IT++ - C++ library of mathematical, signal processing, speech processing,
 *        and communications classes and functions
 *
 * Copyright (C) 1995-2008  (see AUTHORS file for a list of contributors)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * -------------------------------------------------------------------------
 */

#ifndef ELEM_MATH_H
#define ELEM_MATH_H

#ifndef _MSC_VER
#  include <itpp/config.h>
#else
#  include <itpp/config_msvc.h>
#endif

#include <itpp/base/help_functions.h>
#include <itpp/base/converters.h>
#include <cstdlib>


//!\addtogroup miscfunc
//!@{

#ifndef HAVE_TGAMMA
//! True gamma function
double tgamma(double x);
#endif

#if !defined(HAVE_LGAMMA) || (HAVE_DECL_SIGNGAM != 1)
//! Lograrithm of an absolute gamma function
double lgamma(double x);
//! Global variable needed by \c lgamma function
extern int signgam;
#endif

#ifndef HAVE_CBRT
//! Cubic root
double cbrt(double x);
#endif

//!@}

namespace itpp {

  //!\addtogroup miscfunc
  //!@{

  // -------------------- sqr function --------------------

  //! Square of x
  inline double sqr(double x) { return (x * x); }
  //! Absolute square of complex-valued x, ||x||^2
  inline double sqr(const std::complex<double>& x)
  {
    return (x.real() * x.real() + x.imag() * x.imag());
  }
  //! Square of elements
  inline vec sqr(const vec &x) { return apply_function<double>(sqr, x); }
  //! Square of elements
  inline mat sqr(const mat &x) { return apply_function<double>(sqr, x); }
  //! Absolute square of elements
  vec sqr(const cvec &x);
  //! Absolute square of elements
  mat sqr(const cmat &x);


  // -------------------- abs function --------------------

  //! Absolute value
  inline vec abs(const vec &x) { return apply_function<double>(std::fabs, x); }
  //! Absolute value
  inline mat abs(const mat &x) { return apply_function<double>(std::fabs, x); }
  //! Absolute value
  inline ivec abs(const ivec &x) { return apply_function<int>(std::abs, x); }
  //! Absolute value
  inline imat abs(const imat &x) { return apply_function<int>(std::abs, x); }
  //! Absolute value
  vec abs(const cvec &x);
  //! Absolute value
  mat abs(const cmat &x);


  // -------------------- sign/sgn functions --------------------

  //! Signum function
  inline double sign(double x)
  {
    return (x == 0.0 ? 0.0 : (x < 0.0 ? -1.0 : 1.0));
  }
  //! Signum function
  inline vec sign(const vec &x) { return apply_function<double>(sign, x); }
  //! Signum function
  inline mat sign(const mat &x) { return apply_function<double>(sign, x); }

  //! Signum function
  inline double sgn(double x) { return sign(x); }
  //! Signum function
  inline vec sgn(const vec &x) { return apply_function<double>(sign, x); }
  //! Signum function
  inline mat sgn(const mat &x) { return apply_function<double>(sign, x); }

  //! Signum function
  inline int sign_i(int x)
  {
    return (x == 0 ? 0 : (x < 0 ? -1 : 1));
  }
  //! Signum function
  inline ivec sign_i(const ivec &x) { return apply_function<int>(sign_i, x); }
  //! Signum function
  inline imat sign_i(const imat &x) { return apply_function<int>(sign_i, x); }

  //! Signum function
  inline int sgn_i(int x) { return sign_i(x); }
  //! Signum function
  inline ivec sgn_i(const ivec &x) { return apply_function<int>(sign_i, x); }
  //! Signum function
  inline imat sgn_i(const imat &x) { return apply_function<int>(sign_i, x); }

  //! Signum function
  inline int sign_i(double x)
  {
    return (x == 0.0 ? 0 : (x < 0.0 ? -1 : 1));
  }

  // -------------------- sqrt function --------------------

  //! Square root of the elements
  inline vec sqrt(const vec &x) { return apply_function<double>(std::sqrt, x); }
  //! Square root of the elements
  inline mat sqrt(const mat &x) { return apply_function<double>(std::sqrt, x); }


  // -------------------- gamma function --------------------

  //! Deprecated gamma function - please use tgamma() instead
  inline double gamma(double x) { return tgamma(x); }
  //! Deprecated gamma function for vectors. Will be changed to tgamma().
  inline vec gamma(const vec &x) { return apply_function<double>(tgamma, x); }
  //! Deprecated gamma function for matrices. Will be changed to tgamma().
  inline mat gamma(const mat &x) { return apply_function<double>(tgamma, x); }


  // -------------------- rem function --------------------

  //! The reminder of the division x/y
  inline double rem(double x, double y) { return fmod(x, y); }
  //! Elementwise reminder of the division x/y for vec and double
  inline vec rem(const vec &x, double y)
  {
    return apply_function<double>(rem, x, y);
  }
  //! Elementwise reminder of the division x/y for double and vec
  inline vec rem(double x, const vec &y)
  {
    return apply_function<double>(rem, x, y);
  }
  //! Elementwise reminder of the division x/y for mat and double
  inline mat rem(const mat &x, double y)
  {
    return apply_function<double>(rem, x, y);
  }
  //! Elementwise reminder of the division x/y for double and mat
  inline mat rem(double x, const mat &y)
  {
    return apply_function<double>(rem, x, y);
  }

  // -------------------- mod function --------------------

  //! Calculates the modulus, i.e. the signed reminder after division
  inline int mod(int k, int n)
  {
    return (n == 0) ? k : (k - n * floor_i(static_cast<double>(k) / n ));
  }


  // -------------------- factorial coefficient function --------------------

  //! Calculates factorial coefficient for index <= 170.
  double fact(int index);


  // -------------------- binomial coefficient function --------------------

  //! Compute the binomial coefficient "n over k".
  double binom(int n, int k);

  //! Compute the binomial coefficient "n over k".
  int binom_i(int n, int k);

  //! Compute the base 10 logarithm of the binomial coefficient "n over k".
  double log_binom(int n, int k);


  // -------------------- greatest common divisor function --------------------

  /*!
   * \brief Compute the greatest common divisor (GCD) \a g of the elements
   * \a a and \a b.
   *
   * \a a and \a b must be non-negative integers. \a gdc(0, 0) is 0 by
   * convention; all other GCDs are positive integers.
   */
  int gcd(int a, int b);


  // -------------------- complex related functions --------------------

  //! Real part of complex values
  vec real(const cvec &x);
  //! Real part of complex values
  mat real(const cmat &x);
  //! Imaginary part of complex values
  vec imag(const cvec &x);
  //! Imaginary part of complex values
  mat imag(const cmat &x);

  //! Argument (angle)
  vec arg(const cvec &x);
  //! Argument (angle)
  mat arg(const cmat &x);
  //! Angle
  inline vec angle(const cvec &x) { return arg(x); }
  //! Angle
  inline mat angle(const cmat &x) { return arg(x); }

  // Added due to a failure in MSVC++ .NET 2005, which crashes on this
  // code.
#ifndef _MSC_VER
  //! Conjugate of complex value
  inline cvec conj(const cvec &x)
  {
    return apply_function<std::complex<double> >(std::conj, x);
  }
  //! Conjugate of complex value
  inline cmat conj(const cmat &x)
  {
    return apply_function<std::complex<double> >(std::conj, x);
  }
#else
  //! Conjugate of complex value
  cvec conj(const cvec &x);

  //! Conjugate of complex value
  cmat conj(const cmat &x);
#endif

  //!@}

} // namespace itpp

#endif // #ifndef ELEM_MATH_H